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SUMMARY: (10 pt) 
The ability to detect damages real-time on-line, based on vibration data measured from sensors, will ensure the 
reliability and safety of structures. Innovative data analysis techniques for the on-line damage detection of 
structures have received considerable attentions recently. However, most of the techniques have been studied 
based on shear beam type of structures with small degree of freedoms. A challenging problem in structural 
damage detection is to minimize the number of sensors and reduce the numerical difficulty in obtaining 
reasonably accurate results when the system is complex. In this connection, a newly proposed data analysis 
method for structural damage identifications, referred to as the sequential nonlinear LSE (SNLSE) approach, will 
be studied in this paper using a continuous beam structure. Experimental study will be carried out with limited 
number of measured response data. The capability of the SNLSE approach in identifying the structural damage 
will be verified. 
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1. INTRODUCTION 
 
Installation of structure health monitoring (SHM) system is necessary and plays an important role in 
the assessment of structure conditions to ensure the reliability and safety of structures. Early detection 
of structural damage is an important goal of SHM systems and critical for the decision making of 
repair and replacement maintenance. Analysis methodologies based on vibration data measured from 
sensors has received increasing attention recently in the field of civil engineering for damage 
identification of structures [e.g., Bernal and Beck (2004)]. Most of the methodologies available in the 
literature [e.g., Bernal and Beck (2004)] are capable of identifying the constant system parameters, 
such as the stiffness, and require both the referenced data (data for the structure without damage) and 
the data after structural damage. Then, the damage is obtained by a comparison of the constant 
structural parameters prior to and after damages. In practice, however, the referenced data may not be 
available or difficult to obtain, and after a severe event, such as a strong earthquake, it may not be 
feasible to conduct vibration tests to obtain meaningful data for damage identifications. Hence, it is 
desirable for an analysis method to be capable of detecting the structural damage based solely on the 
vibration data measured during a severe event without a prior knowledge of the undamaged structure. 
In this connection, several on-line damage identification methodologies have been developed recently, 
including the least square estimation (LSE) [e.g., Lin et al (2001), Smyth, et al (2003), Yang and Lin 
(2004, 2005)], the extended Kalman filter (EKF) [e.g., Hoshiya and Saito (1984), Sato et al (2001), 
Yang et al (2006a)], the sequential nonlinear least square estimation (SNLSE) [Yang et al (2006b)], 
the quadratic sum-squares error (QSSE) [Yang et al (2009)], and others. 
 
For the application of LSE approach, all the responses including acceleration, velocity and 
displacement have to be available. However, in practice, acceleration responses are usually measured 
on-line, whereas the velocity responses can be obtained through a single numerical integration. For the 
displacement response, however, a double numerical integration from the acceleration response results 
in a significant numerical drift that is also magnified seriously when damages occur [Yang and Lin 



(2005)]. Nevertheless, such a numerical drift can be removed using special approaches [see Yang and 
Lin (2005)]. 
 
With only the measurements of acceleration responses, the EKF, SNLSE and QSSE approaches can be 
used for the damage identification. However, the EKF approach requires that the estimates of the 
initial values of the unknown parameters should not be far away from their theoretical values in order 
to obtain convergent solutions, as compared with the SNLSE and QSSE approaches. Further, the 
dimension of the extended state vector Z  in EKF is quite large, especially for large and complex 
structures. Hence, the computational efforts required for estimating Z  is quite involved.  
 
Among the approaches described above, the SNLSE and QSSE approaches are more suitable for on-
line damage identification of structures, in terms of accuracy, convergence and efficiency, and they 
have been proved to be effective for damages detection of building structures that can be represented 
as shear-beam type of structures with spring-mass systems [Yang and Lin (2006b, 2009)]. In this 
paper, the recently proposed SNLSE approach will be examined for identifying damages of relatively 
more complex structures such as bridge structures. Recursive solutions will be derived based on the 
finite element model of the bridge structures. Due to space limitation, only experimental verification 
of a three span reinforced concrete continuous beam will be demonstrated to show the accuracy and 
effectiveness of the proposed SNLSE approach. 
 
 
2. SEQUENTIAL NONLINEAR LSE 
 
The equation of motion of a m-DOF nonlinear structure can be expressed as 

c s (t)  [ (t), ]  [ (t), ] (t)+ + =  θ θ ηM x F x F x f  (2.1) 

in which T
1 2 m(t) [ x ,  x ,  ...,  x ]=x = m-displacement vector; M  = (m×m) mass matrix; c  [ (t), ]θF x  

= m-damping force vector; s  [ (t), ]θF x = m-stiffness force vector; T
1 2 s(t) [ f (t),  f (t),  ..., f (t)]=f = s-

excitation vector; and (m s)η = ×  excitation influence matrix associated with (t)f . In Eq.(1), 
T

1 2 n[ ,  , ...,  ]θ θ θ θ=  is an n-unknown parametric vector with iθ  (i = 1, 2, …, n) being the ith 
unknown parameter of the structure, including damping, stiffness, nonlinear and hysteretic parameters. 
We shall assume for the time being that the unknown parametric vector θ  is constant, i.e., θ  = 1θ  = 

2θ  = … = k 1θ + , where i  (t i t)θ θ Δ= =  for i = 1, 2, …, k+1. In what follows, the bold face letter 
represents either a vector or a matrix. 

 

The observation equation associated with the equation of motion can be written as  

[ ; t] (t) (t)ϕ θ ε+ =X y  (2.2) 

in which (t) (t) (t)η= −y f Mx  is known and (t)ε  is the model noises. Eq.(2.2) can be discretized at 

kt t k tΔ= =  as  

k k k k k( )ϕ θ ε+ =X y  (2.3) 

in which k k k k( ) [ (t ); t ]ϕ ϕ=X X , k k(t )θ θ= , k k(t )ε ε=  and k k(t )=y y . Instead of solving kX  

and kθ  simultaneously by forming an extended state vector as in the EKF approach, we shall solve 

kX  and kθ  in two steps. The first step is to determine kθ  by assuming (or under the condition) that 



kX  is given using the LSE solution, and the second step is to determine kX  through a nonlinear LSE 
approach, referred to as the SNLSE, as follows. 

 

Step I: Suppose the state vector k 1+X  is known and the parametric vector k 1θ + is constant. The 

classical LSE recursive solution k 1θ +  that is the estimate of k 1θ +  is obtained as follows 

k 1 k k 1 k 1 k 1 k 1 k 1 k( )[ ( ) ]θ θ ϕ θ+ + + + + += + −K X y X  (2.4) 

T T 1
k 1 k 1 k k 1 k 1 k 1 k 1 k k 1 k 1( ) ( )[ ( ) ( )]ϕ ϕ ϕ −

+ + + + + + + += +K X P X I X P X  (2.5) 

k k 1 k k k k k 1( ) ( )ϕ− −= −P P K X X P  (2.6) 

in which k 1 k 1( )+ +K X ,  k 1 k 1( )ϕ + +X  and kP  are defined similarly in the LSE approach, except that 

the former two matrices are functions of k 1+X . 

 

Step II: As observed from Eqs. (2.4) – (2.5), k 1θ +  is a function of the unknown state vector k 1+X , 

i.e. k 1 k 1 k 1( )θ θ+ + += X . The estimate k 1|k 1
ˆ

+ +X  of k 1+X  was obtained by the following recursive 

solution [Yang et al (2006b)], 

k 1|k 1 k 1|k k 1 k 1 k 1 k 1|k
ˆˆ[ ( )]+ + + + + + += + −X X K y y X  (2.7) 

where k 1 k 1|k k 1 k 1|k k 1ˆ ( ) ( )ϕ θ+ + + + +=y X X , and 

k 1|k k 1,k k|k 1 k 2 k 1
ˆΦ+ + += + +X X B x B x  (2.8) 

In Eqs. (2.7) and (2.8), k 1,kΦ +  is the transition matrix for the state vector from k to k+1, and 1B , 2B  

and k 1+K  are appropriate matrices [see Yang et al (2006b)]. 

 
This approach is referred to as the sequential nonlinear LSE (SNLSE), and it will be verified by 
experimental studies later. 
 
 
3. EXPERIMENTAL STUDIES 
 
Experimental studies have been carried out using a three span reinforced concrete continuous beam 
model. The parameters of the structure were identified using the SNLSE approach with data measured 
from the vibration tests and compared with the results from the finite element model, to verify the 
effectiveness and accuracy of SNLSE parametric identification and damage detection of bridge 
structures. 

 



3.1 Experiment setup 

 
 

Figure 1. Three span reinforced concrete continuous beam model 
 

The experimental model of three-span reinforced concrete continuous beam was setup as shown in 
Fig.1. The concrete was reinforced by the galvanized wires which were distributed uniformly in both 
tension and compression zones of the cross section. The density of the beam was 32500Kg / mρ = , 

and the elastic modulus was 10E 3.2 10 Pa= × . The beam was of size 
3800mm 200mm 30mm× × with span arrangement of 1000+1700+1000mm and 50mm overhang on 
each end. The boundary conditions of the beam were as shown in Fig.1c. Five accelerometers were 
installed with three on the mid-span and one on each side-span of the beam. The vibration test data 
was transmitted to the computer through a data acquisition device with a conditioning amplifier. The 
detailed configuration of the experimental setup is illustrated in Fig.2. 

 
 

Figure 2. Arrangement of sensors and data acquisition devices in the model test 

 

3.2 Finite element modelling 
 

The finite element model of the three-span reinforced concrete continuous beam was established using 
8 beam elements and 9 nodes. The layout of elements and nodes and their numbers is illustrated in 
Fig.3. 

 



 
Figure 3. Finite element model of the three-span reinforced concrete continuous beam 

 
Let iM  and iK  be the local mass matrix and the local stiffness matrix, respectively, of the ith element 
(member) with a uniform cross-section in the local coordinate system, one has 
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in which iL  and im  are the length and the mass per unit length of the ith element (or member) of the 
sub-structure, respectively, and i i i ik E I / L=  is the equivalent stiffness parameter, where iE  and iI  
are the Young's modulus and moment of inertial of the ith element (or member), respectively. The 
local element mass and element stiffness matrices iM  and iK  are transformed into iM  and iK , 
which are the element matrices in the global coordinate system of the structure, using the 
transformation matrix T , i.e., 

T
i i=M T M T ; T

i i=K T K T  ( 3.2) 

in which T  is a (4×4) matrix with its (i, j) element, ijT , as: 11 22 33 44 cos= = = = ϕT T T T , 

12 34 sin= = ϕT T , 21 43 sin= = − ϕT T  , and ij 0=T  for other i and j, where φ is the angle between the 

local and global coordinates. Finally, the element mass and stiffness matrices iM  and iK  are 
expanded to (m×m) matrices denoted by iM  and iK , and the global mass and stiffness matrices M  
and K  of the structure are obtained by summing up iM  and iK  for all the elements, i.e. 

i
i 1=

= ∑M M
p

; i i i
i 1 i 1

k
= =

= =∑ ∑K K S
p p

 (3.3) 

in which for simplicity of presentation iK  is expressed in terms of i ik S , where i i i ik E I / L=  is the 

equivalent stiffness parameter and iS  is a (m×m) matrix of the ith element. In Eq.(3.3), p is the total 
number of elements (members). 

 

For the three-span reinforced concrete continuous beam, the structural parameters are as follows: (1) 
mass per unit length is m A 15Kg / m= ρ = , (2) elastic modulus is 10

iE 3.2 10 Pa= × ( i 1 : 9= ), (3) 
length of the elements are 1 2 7 8L L L L 0.5m= = = = , 2~5L 0.425m= , and (4) first 4 natural 

frequencies are 1f 24.2= Hz, 2f 53.3= Hz, 3f 62.9= Hz, 4f 91.0= Hz. 

 



An impulse excitation was applied at the location of 3/8 of the main span by a hammer. Vertical 
accelerations at nodes 2, 4, 5, 6, 8, denoted by a2, a4, a5, a6, a8 respectively, were acquired by the 
accelerometers. Structural parameters were identified using the data of the first 3s starting from the 
10th sample so that the vibration was considered as free vibration. Two different cases were studied 
where the beam was first considered to be undamaged and then damaged. 

 

3.3 ：Case 1 undamaged 

 
3.3.1 Data processing 
The time history of measured acceleration are shown in Fig.4, with sampling rate of 0.0031s. The first 
4 modal frequencies can be obtained by frequency spectrum analysis of the acceleration response at 
node 2, which are a1f 25.9= Hz, a2f 57.6= Hz, a3f 64.4= Hz, and a4f 85.7= Hz respectively. 

The maximum difference between the theoretical frequencies obtained from the finite element 
modeling and the measured frequencies is about 8% as given in Table 1, which shows that the finite 
element model reflects the dynamic characteristics of the actual structure very well and thus, it can be 
used for identification of structural parameters.  

 
 

Figure 4. Acceleration time histories of measured nodes 
 

Table 1. Comparison between theoretical and measured undamaged frequencies 
 1st 2nd 3rd 4th 
Theoretical Value (Hz) 24.2 53.3 62.9 91.0 
Measured Value (Hz) 25.9 57.6 64.4 85.7 
Relative Error (%) 7.02 8.07 2.38 5.82 
 
3.3.2 Angular acceleration 
There are 2 degrees of freedom at each node of the beam element, namely, the vertical and angular 
responses. In order to compute the structural parameters using SNLSE, the angular response is also 
needed in addition to the vertical response of the structure. However, in practice it is difficult to 
measure the angular response directly, and therefore, it will be estimated from the vertical response 
using the following approach.  

 

Let γ  denote the nodal rotational angle, according to the relationship between deformations, one has 

a2 

a4

a5

a6

a8

Time: Sec 



dy
=

dx
γ           (3.4) 

 

in which y denotes the vertical displacement and x denotes the transverse coordinate. The angular 
velocity and acceleration can be obtained as 

2d y / dx
dt

γ =          (3.5) 

3

2

d y / dx

dt
γ =          (3.6) 

 

Under vertical loads, the nodal transverse coordinate x does not vary with time for small deformation, 
and the differential orders can be changed as 

d(dy / dt) dv
dx dx

γ = =         (3.7) 

2 2d(d y / dt ) da
dx dx

γ = =         (3.8) 

 

where v  is nodal vertical velocity, a  is nodal vertical acceleration. In summary, the nodal angular 
responses equal to the derivation of the corresponding vertical responses with respect to the transverse 
coordinates. In numerical computation, the differentiation process requires adequate density of 
measuring nodes, whereas the number of accelerometers installed in the experiment is limited. 
According to the mechanics of material, the deformation of a continuous beam at any time instance is 
accordance with a spline curve which in mathematics is a sufficiently smooth piecewise-polynomial 
function. Therefore, the vertical accelerations at unmeasured nodes were first estimated by spline 
interpolation from the measured vertical accelerations, and then the angular acceleration were 
computed using Eq.(3.8). Selected angular accelerations at the measured nodes are shown in Fig.5.  

 
 

Figure 5. Angular acceleration time histories at the measured nodes 
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3.3.3 Parametric estimation 
With the measured accelerations at nodes 2, 4, 5, 6, 8 and the estimated accelerations at nodes 1, 3, 7, 
9 as well as the corresponding angular accelerations computed, structural parameters ik  are identified 
based on the SNLSE approach. The computed theoretical and estimated values of structural 
parameters are listed in Table 2. It can be seen from both Table 2 that the proposed SNLSE approach 
is capable of identifying structural parameters accurately.  

 

Table 2. Comparison between the theoretical and estimated structural parameters 
Structural Parameters Theoretical Values 

( 410 N.m ) 
Estimation 
( 410 N.m ) 

Error (%)

k1 2.52 2.58 2.21 
k2 2.52 2.61 3.42 
k3 2.96 3.11 4.79 
k4 2.96 3.12 5.32 
k5 2.96 2.90 2.11 
k6 2.96 2.67 9.78 
k7 2.52 2.34 7.21 
k8 2.52 2.61 3.54 
 
 

3.4 ：Case 2 damaged 

The damage is simulated by symmetrically reducing the cross sectional area of the beam from 
1150mm to 1350mm along the longitudinal direction, as illustrated in Fig.6. In the damage region, two 
blocks were cut off and each is of the dimension 200mm 50mm 30mm× × . Similar to the 
undamaged case, an impact load was applied at the location of 3/8 of the main span and only the free 
vibration period was considered for signal processing and parametric identification.  

 
 

Figure 6. Damage pattern of the beam 

 
3.4.1 Data processing 
The time history of the first 2 seconds of the measured acceleration are shown in Fig.7, with sampling 
rate of 0.0031s. The first 4 modal frequencies were obtained by frequency spectrum analysis of the 
acceleration response at node 2, which are a1f 26.4= Hz, a2f 53.3= Hz, a3f 63.5= Hz, and 

a4f 90.6= Hz, respectively. The maximum difference between the theoretical frequencies obtained 

from the finite element modeling and the measured frequencies is about 9% as given in Table 3. It can 
be seen by comparing Table 1 and 3 that the measured damaged frequencies are closer to the 
corresponding theoretical values than the measured undamaged frequencies. This shows that using 
frequency alone is not able to draw conclusions on structural damage. 



 
 

Figure 7. Acceleration time histories of measured nodes 
 

Table 3. Comparison between theoretical and measured damaged frequencies 
 1st 2nd 3rd 4th 
Theoretical Value (Hz) 24.2 53.3 62.9 91.0 
Measured Value (Hz) 26.4 53.3 63.5 90.6 
Relative Error (%) 4.58 0 0.95 0.44 
 
3.4.2 Angular acceleration 
The accelerations of unmeasured nodes as well as the angular accelerations are computed using the 
same approach as in the undamaged case. Fig.8 plots the angular accelerations at the measured nodes 
for representation.  

 
 

Figure 8. Angular acceleration time histories at the measured nodes 
 
3.4.3 Parametric estimation  
Based on the SNLSE approach, the structural parameters ik  were identified. The computed theoretical 
and estimated values of structural parameters are listed in Table 4. It can be seen from Table 4 that the 
proposed SNLSE approach is capable of identifying structural parameters as well as damages with 
reasonable accuracy.  

 
 

a2 

a4 

a5 

a6 

a8 

2γ

Time: Sec 

Time: Sec

4γ  

5γ  

6γ  

8γ  



Table 4. Comparison between the theoretical and estimated structural parameters 
Structural Parameters Theoretical Values 

( 410 N.m ) 
Estimation 
( 410 N.m ) 

Error (%)

k1 2.52 2.65 5.33 
k2 2.52 2.65 5.14 
k3 2.37 2.56 7.99 
k4 2.96 3.42 15.41 
k5 2.96 2.61 12.01 
k6 2.96 2.82 4.81 
k7 2.52 2.29 9.11 
k8 2.52 2.82 11.73 
 
 
5. CONCLUSION 
 
In this paper, the recently proposed sequential nonlinear least square estimation (SNLSE) has been 
used to identify structural damages of a continuous beam structure with limited number of 
measurements. Experimental studies were carried out using a three span reinforced concrete 
continuous beam and the proposed SNLSE approach was applied for identification of structural 
parameters as well as damages. The results showed that SNLSE approach is capable of identifying the 
structural damages with reasonable accuracy and effectiveness. 
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