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SUMMARY:  
Under strong seismic excitations structural systems exhibit hysteretic behavior. This behavior can be accurately 
evaluated through high-fidelity numerical models, an approach that typically involves a significant 
computational cost. This study discusses an alternative simulation framework based on parsimonious modeling 
of the hysteretic behavior using the SIMULINK modeling environment in MATLAB. This parsimonious 
modeling is established by describing the restoring force for each floor, based on its corresponding drift. Three 
different models are considered for the restoring force-displacement relationship. A comprehensive approach is 
discussed for calibration of these models based on information obtained by a high-fidelity structural model. The 
accuracy and the computational savings of this parsimonious modeling approach are then examined by 
comparison to the high-fidelity structural model (developed in OpenSees) over an ensemble of ground motion 
records. The results show the great computational savings established through the parsimonious modeling 
approach, at the expense of a small only reduction in accuracy. 
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1.INTRODUCTION 
 
Under strong seismic excitations structural systems exhibit hysteretic behavior and evaluation of their 
time-history response requires development of high-fidelity numerical models that can adequately 
describe this behavior. A comprehensive approach for this task involves modeling the structural 
components as one – dimensional finite elements with distributed inelasticity. This high-fidelity 
modeling approach is associated, though, with a significant computational burden, which makes its 
implementation challenging. This is particularly true for probabilistic risk assessment applications 
which require a large number of structural simulations to estimate seismic risk (Taflanidis and Beck, 
2009, Spacone et al., 1996a). The current study discusses a parsimonious modeling approach for the 
hysteretic behavior of nonlinear structures using the versatile SIMULINK modeling environment in 
MATLAB (Klee, 2007). This parsimonious modeling is established by globally describing the 
restoring force for each floor, based on its corresponding drift. Three different models will be 
considered here for the restoring force-displacement relationship, ultimately representing three 
different types of hysteretic behavior. A comprehensive approach is discussed for calibration of these 
models based on information obtained from a high-fidelity structural model. The accuracy and the 
computational savings of this parsimonious modeling approach are then examined by comparison to 
the high-fidelity structural model over a large ensemble of ground motion records. The results show 
the great computational savings established through the parsimonious modeling approach, at the 
expense of a small only reduction in accuracy. They also validate the established approach for 
calibrating the parsimonious model using information from the high fidelity one. 
 
2.MODELING OF STRUCTURAL RESPONSE	
 
A parsimonious model for the nonlinear, hysteretic structural response is established by modeling the 
cumulative restoring forces per story (from all structural elements contributing to that force) through a 
shear-structure model. In this study we will focus on planar structural models. For a n-story structure 



let n
s x  denote the vector of displacements for each floor relative to the base, Ms, and Cs 

correspond to the nxn mass and damping matrices, respectively, n
s R to the vector of earthquake 

influence coefficients, Fr to the vector of restoring forces for each floor and Ts the drift transformation 
matrix. The equation of motion is then 

T
s s s s s r s s gx   M x C x T F M R                     (1.1)   

where gx  denotes the ground acceleration. The vector of inter-story drifts is then s sδ T x . The 

restoring forces at each story, Fi, are formulated as a nonlinear function of the corresponding drift at 
each story, δi. The mass matrix Ms is simply the diagonal matrix consisting of these masses, whereas 
the damping matrix Cs can be formulated based on some appropriate modeling assumption. A 
common approach, also assumed in the illustrative example that will be considered later, is to use 
Rayleigh damping. 
 
3.PARSIMONIOUS MODELING OF HYSTERETIC STRUCUTRES 
 
This section will discuss the hysteretic relationship between restoring forces and inter-story drifts 
(displacements), F-δ. Two different components can be distinguished for developing these models: (i) 
definition of the backbone curve, describing the behavior due to cyclically increasing deformation and 
(ii) definition of the rules that describe the hysteretic behavior due to transient loading. Here, two 
different classes of models will be considered. Both of them can be very efficiently incorporated 
within the SIMULINK modeling framework that will be discussed in the next section (this is one of 
the main reasons for choosing them). The first one is a piecewise linear model, and two different 
hysteretic models will be considered within this class, an ideal elastic-plastic and a peak-oriented one. 
The second class corresponds to the generalized Masing model, belonging in the greater family of 
smooth hysteretic models. For both models possible stiffness and strength deterioration characteristics 
will be addressed. Initially the mathematical formulation for these models will be presented and then 
their calibration will be analyzed based on information obtained from high-fidelity (distributed 
inelasticity finite-element) models. 
 
3.1.Piecewise linear hysteretic model 

The simplest case for piecewise hysteretic model is the ideal elasto-plastic spring with no strain 
hardening. The backbone curve is defined by the initial (elastic) stiffness kl and the maximum force 
capacity Fu (for asymmetric cases the force capacity can be considered different in the two directions 
of loading; Fu+ and Fu-, respectively) or equivalently, by the yield displacement δy (or for asymmetric 
cases δy+ and  δy-, respectively). The subscripts + and – will be used herein to denote characteristics in 
positive and negative directions, respectively. After the yielding displacement δy the force attains its 
maximum value (no strain hardening) but unloading follows the initial incline until the restoring force 
retains its maximum value in the other direction (hysteresis rule). If reloading starts before that 
threshold is attained, then the reloading will follow the initial incline till the maximum value is 
reached. Note that this model is equivalent to the behavior of a linear spring (with stiffness kl) in series 
with a Coulomb friction damper (with friction force Fu). The hysteretic behavior of the ideal elasto-
plastic spring can be actually modeled through the following convenient relationship 
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where the superscript j is used to denote the response at the jth
  time instance jt  and sat{f,u,l} is the 

saturation function with upper and lower limits u and l , respectively 
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Figure 3.1. Peak-oriented hysteretic model 

 
A modification to the hysteretic rule for this bilinear model is the peak oriented model shown in 
Figure 3.1. In this case the reloading path targets the previous maximum displacement once the 
horizontal axis is crossed.  If that displacement is not larger than the yielding displacement, then the 
path targets the yielding displacement. For this model the linear stiffness in (1.2) needs to be modified 
to 
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Figure 3.2. Bilinear hysteretic model with strain hardening; individual spring components (left) and resultant 

restoring force (left) 
 
Combination, now, in parallel connection, of multiple springs leads to more complex piecewise linear 
restoring force characterization. For example, connection of a linear and an ideal elasto-plastic spring 
as in Figure 3.2 leads to bilinear restoring force with strain hardening. Such models are calibrated with 
respect to the characteristics for the backbone curve of the resultant restoring force, which for the 
example in Figure 3.2 means the linear stiffness kl, the post yield stiffness ratio a and the yielding 
displacements δy+ and δy-. It can be then implemented by combining the simple spring elements, which 
for the example in Figure 3.2 leads to 2l lk ak , 1 (1 )l lk a k  , 1 1u l yF k δ   and 1 1u l yF k δ  . 

 
3.2. Generalized Masing model 

 
The generalized Masing model (Spacone et al., 1996b, Vetter et al., 2012) can be considered as an 
extension of the distributed element model (Bertero et al., 1978). The latter consists of a collection of 
a large number of ideal, symmetric, elasto-plastic elements connected in parallel with common 
stiffness but different distribution of yield strengths, with the added capability to incorporate strength 
deterioration . The generalized-Masing model facilitates a straightforward implementation of a 



distributed element model with infinite number of elements, with no requirement to explicitly track 
the state of each element. It is based on the initial postulation provided by Masing ; if the virgin 
(backbone) curve for loading is described by the implicit relationship ( , ) 0f F δ  , then according to 

Masing’s hypothesis, each branch of the hysteresis loop between points (-Fa,-δa) and  (Fa,δa) is given 

by 
* *

( , ) 0
2 2

F F δ δ
f

 
 , where (F*,δ*) is the load reversal point for the branch, which is (F*,δ*)=(-Fa-

,-δa) for the loading branch and (F*,δ*)=(Fa,δa) for the unloading branch. The generalized Masing 
model follows the additional rules (Vetter et al., 2012)   

 Incomplete loops: The equation of any hysteretic force - drift curve can be obtained by 
applying the original Masing rule to the virgin curve using the latest point of load reversal. 
For example, if the virgin loading curve OA in Figure 3.3 is defined by ( , ) 0f F δ   then the 

branch curve CD is defined by 
* *

( , ) 0
2 2

F F δ δ
f

 
  with   (F*,δ*)=(Fc,δc). 

 Completed loops: Once an interior curve crosses a curve from a previous load cycle under 
continued loading or unloading, a hysteresis loop is completed and the load deformation curve 
of the previous cycle is continued. For example if the unloading curve in Figure 3.3 is 
continued to point C, further unloading will follow a path that is extension of the curve ABC. 

For completely characterizing the generalized Masing model, the initial stiffness kl, the maximum 
force Fu and a parameter n defining the elastic to plastic transition are required. 
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Figure 3.3. Masing model; force-displacement cycles for (a) stable cycle loading and (b) transient loading 

3.3. Calibration of parsimonious model 

 
For the calibration of the parsimonious hysteretic models two basic steps are introduced: (i) 
determination of the linear characteristics and (ii) selection of the remaining characteristics of the 
backbone curve, with an additional third step corresponding to the evaluation of the fit of the 
hysteretic behavior between the different available models. 
Linear characteristics: If kl

i denotes the initial stiffness for the restoring force of the ith story then the 

initial stiffness matrix is 1( ... ... )T i n
s s l l l sdiag k k k   K T T , where diag(.) denotes a diagonal matrix with 

diagonal entries the arguments inside the parenthesis. The n-stiffness parameters {kl
i; i= 1,…,n} can 

be then selected to match the fundamental period (1 objective) and modeshape (n-1 additional 
objectives, leading to a total of n-objectives) of the high fidelity structural model. This corresponds to 
a well-posed system of n nonlinear equations with n unknowns. Through this approach the 
parsimonious model will have the same linear behaviour as the fundamental mode of the high fidelity 
structural system. 
Backbone characteristics: The characteristics for the backbone curve of each story of the high-fidelity 
structural model may be obtained through a cyclic pushover analysis. The loading in this analysis 
(Figure 3.4) corresponds to roof displacement cycles imposed in positive and negative direction. For 
each floor the restoring force can be then calculated by summing the shear forces of the columns of 
each floor. Retaining then the history of restoring force - interstory drift of each floor at the 
displacement reversal instances leads to points approximating the backbone curve of the structural 
model. For obtaining good resolution the displacement loading pattern needs to gradually increase up 
to the maximum imposed roof displacement as is depicted in Figure 3.4(a). The characteristics of the 



backbone curve for the parsimonious hysteretic model may be then obtained to fit these points. For a 
piece-wise linear model the number of linear segments needs to be additionally decided, i.e. number 
of springs connected in parallel, along with the characteristics of each of these segments. For a Masing 
model the inclusion or not of a strain hardening segment needs to be additionally considered, i.e., 
addition of a linear spring connected in parallel. Figure 3.4(b) illustrates this fit within the context of 
the illustrative example considered later for both a piecewise linear model and a generalized Masing 
model. The details shown in the figure correspond to the first story of the structure and Δ, H and hi 
denote the roof displacement, the total building height and the story height, respectively. 
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Figure 3.4. Cyclic pushover analysis: (a) loading history and (b) restoring force-displacement points at the 
instances of load reversal along with the approximations by piecewise linear and Masing backbone curves 

 
Evaluation of fit of hysteresis: The fit of the different hysteretic models is finally evaluated through a 
sinusoidal loading, possibly with modulated amplitude and frequency to capture the important range 
of structural dynamics (frequency as well as amplitude of nonlinear vibration). This provides the 
restoring force – interstory drift time history loop (as shown in Figure 3.5), where the restoring force 
for the high-fidelity model is obtained in a similar way as for the cyclic pushover case. The different 
parsimonious hysteretic models (with characteristics determined in the previous two calibration steps) 
can be then compared to this loop to evaluate which one provides a better fit. The one with the better 
fit should be then chosen as the parsimonious model providing the best approximation to the nonlinear 
behavior of the high-fidelity structure. Figure 3.5 illustrates this process for the same case as the 
example shown in Figure 3.4. It is evident in this case that the peak-oriented model provides a better 
fit and it is the one that should be preferred. 
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Figure 3.5. Comparison of hysteresis loops from the structural model against the parsimonious hysteretic model 
 
3.4. SIMULINK Implementation	
 
SIMULINK, is a software package, tightly integrated with MATLAB, used for modeling, analyzing 
and simulating dynamical systems (Klee, 2007). It provides a graphical user interface for constructing 
the models, using standard block diagram representation, and a wide range of algorithms for 
simulating their response. An extensive library of standard components is available within 
SIMULINK (such as integrators, summing junctions, state space representations, saturation, and so 
forth) whereas additional block sets exist that extend the capabilities of SIMULINK for many diverse 



areas of engineering and sciences. After the block diagram of the structural model has been created, 
any of the available numerical integration routines can be implemented to simulate its response (for 
any given excitation).  The user has the option to select a specific solver and step size (applicable for 
fixed-step size integration algorithms), or tolerances for satisfying convergence/accuracy 
requirements. 
 
4. ILLUSTRATIVE EXAMPLE 
 
We now illustrate the concepts discussed in this paper through an example which examines the 
accuracy and the computational savings of this parsimonious modeling approach by comparison to a 
high-fidelity structural model (developed in this study in OpenSees (McKenna, 2011)) over an 
ensemble of 25 ground motion records with different characteristics (leading to different levels of 
nonlinear behavior. A three story concrete benchmark structure is used for the case study and the 
comparison is established in terms of interstory drifts responses. 
 
4.1. High fidelity model 
 
The structure considered corresponds to a three-story moment resisting frame office building designed 
to comply with ASCE-05. The building is designed for a site located in the Los Angeles Basin, which 
was selected to represent a typical urban high seismic region of California. The structural layout of the 
building represents a symmetric three-bay by five bay plan with 6.5 m span lengths. The lateral 
system consists of two exterior moment resisting frames in each direction. The column element sizes 
are 50x50 cm, 45x45 cm and 40x40 cm for the first, second and third story, respectively, while the 
beam size is 30x60 cm. For the analysis a two – dimensional model of a three bay frame is created in 
OpenSees. A fiber model is used to simulate beams and columns. The material stress – strain response 
in each fiber is integrated to get the stress resultant forces. The nonlinear hysteretic behavior of the 
element depends in the constitutive material relationship of the concrete and reinforcing steel fibers 
into which each section is divided. 5% percent Rayleigh damping based on initial stiffness 
characteristics is included to the structural model. The masses of each floor are found to be 97.52, 
95.92 and 92.30 metric tons for the first, second and third floor, respectively. 
 
4.2. Calibration of parsimonious model 
 
The first step for the calibration of the parsimonious model is determination of the linear 
characteristics following the procedure described in section 3.3; The initial stiffness characteristics of 
the parsimonious model are selected to match the fundamental mode of the high-fidelity model, which 
has period of 0.59 sec and modeshape [φ1

i] = [0.269 0.685 1.000], normalized to have value equal to 
one at top floor. The floor stiffness’s for the structure are then found to be [kl

i] = [78.9 42.8 33.0] 
MN/m. The next step needed for the calibration of the parsimonious model is the selection of the 
remaining characteristics of the backbone curve. As discussed earlier the characteristics for the 
backbone curve of each story of the high – fidelity structural model are obtained through a cyclic 
pushover analysis. The loading history that was used is depicted in Figure 3.1(a), while Figure 3.4(b) 
illustrates how the backbone curve of a piecewise linear model and a generalized Masing model of the 
restoring force – interstorey drift relationship were fitted to the backbone characteristics of the high – 
fidelity structural model. For the Masing model strain hardening was additionally used by combining 
in parallel with a linear spring, whereas for the piece-wise linear model a combination of three 
different nonlinear springs was selected for each floor as it provided a better overall fit to the 
backbone curve of the hysteretic model. Table 4.1 shows the characteristics of these springs. The last 
step of the calibration procedure involves the evaluation of fit of the hysteresis loops of the 
parsimonious hysteretic models to the one obtained by the high fidelity model. The dynamic loading 
that was used is a sinusoidal time history which was modulated both in amplitude and frequency. The 
amplitude of the sinusoidal signal was modulated from to 0 to 0.4 g, while the frequency was 
modulated from 2.5 Hz to 0.5 Hz. Figure 3.5 presented earlier illustrates the comparison of the 
hysteretic loops from the high – fidelity structural model against the three parsimonious hysteretic 
models. 



 
Table 4.1. Characteristics of springs used for the parsimonious model. Characteristics for all floors are provided 
in brackets 

Piece-wise linear Masing 
Characteristic Spring 1 Spring 2 Spring 3 Characteristic  

kl (MN/m)  64.9 28.5 21.8
T

 
 13.4 13.2 10.8

T
  0.61 1.14 0.38

T
 

kl (MN/m)  78.3 42.2 32.7
T

 

δy+ (cm)  0.91 1.23 1.05
T

 
 3.50 3.50 4.2 0

T
  28.0 19.3 17.5

T
 n  1.4 1.5 1.5

T
 

δy- (cm)  0.91 1.23 1.05
T

  3.50 3.50 4.2 0
T

  28.0 19.3 17.5
T

 Fu (kN)  970 880 640
T

 

    
kl spring in 

parallel (MN/m) 
 0.63 0.64 0.33

T
 

 
4.3. Comparison of accuracy and efficiency of parsimonious modeling 
 
This section examines in detail the accuracy and efficiency of the parsimonious modeling approach 
using the selected ensemble of ground motions. Three different parsimonious models are considered 
and the notation used is the following: 
 

Masing: Generalized Masing model with an additional strain hardening component.  
Elasto-plastic: Piece-wise linear model from combination of three springs with ideal elastic - 

plastic hysteretic behavior.  
Peak-oriented: Piece-wise linear model from combination of three springs with peak-oriented 

hysteretic behavior. 
 

The restoring force – interstorey drift diagram of the first and the third floor obtained by the high – 
fidelity structural model and the predicted ones by the parsimonious models for the case of the Kobe 
earthquake excitation is shown in Figure 4.1. A comparison between the high – fidelity and the 
parsimonious hysteretic curves reveals very similar qualitative behavior. It is concluded that in general 
all the three parsimonious models capture most of the important features of the hysteretic behavior of 
the high – fidelity structural model. It should be noted that the peak oriented hysteretic model provides 
the best approximation between the three parsimonious models, since it captures also the change of 
stiffness during the reloading branch of the hysteretic curve. This agrees with the arguments made 
earlier, at the calibration stage of the models. 
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Figure 4.1. Comparison between the high fidelity and the parsimonious restoring force – interstorey drift 

hysteretic curves of the first (left) and the third floor (right) for the Kobe earthquake record. 
 
The accuracy of the three different parsimonious models is now assessed for the entire ensemble of 
ground motions by calculation of the average relative absolute error and the coefficient of 
determination of the maximum responses of the interstorey drift of each floor. These quantities are 
statistical measures which quantify how good is on average the approximation of a response quantity 



compared to the corresponding response of the high fidelity model. The relative absolute error AE is 
defined as: 
 

'
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                       (2.1) 

 
where vi is the maximum drift response of the high fidelity model for each one of the 25 selected 
ground motions, vi’ is the corresponding maximum response of the parsimonious model for each one 
of the 25 selected ground motions, and N is the number of the samples (i.e. the number of the selected 
ground motions. The relative absolute error quantifies the discrepancy between the assumed “exact” 
value of the maximum response, obtained by the high-fidelity structural model, and the corresponding 
approximation predicted by the parsimonious model. The coefficient of determination R2 is defined as: 
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and denotes the proportion of variation in the data that is explained by the parsimonious model. 
Smaller values for the absolute error correspond to more reliable predictions for the approximate (i.e. 
parsimonious) model. Values for the coefficient of determination close to 1 indicate that the 
parsimonious model can adequately capture the variability of the high-fidelity responses. 
 
Table 3 show the relative absolute error and the coefficient of determination calculated for the three 
different parsimonious models for the maximum interstory drift of each floor. In general, the quality 
of approximation obtained by the parsimonious modeling approach is satisfactory, since the relative 
absolute error varies approximately from 7% to 13.5% and the coefficient of determination varies 
from 0.90 to 0.99. It is important to note that comparisons (Aviram et al., 2008) between different 
high-fidelity models for non-linear structural behavior (established with different modeling 
assumptions for addressing the nonlinear structural behavior) yield similar levels of errors in peak 
responses. As such the accuracy established in the current study should be considered as good. 
 
Table 4.2. Relative absolute error and coefficient of determination of the maximum interstorey drift of the three 
parsimonious models 

Model 
AE (%) R 

1st Floor 2nd Floor 3rd Floor 1st Floor 2nd Floor 3rd Floor 
Peak - Oriented 9.61 7.27 11.65 0.99 0.98 0.93 

Masing 11.86 10.29 10.92 0.99 0.99 0.95 
Elasto - Plastic 12.31 10.71 13.47 0.99 0.98 0.90

 
Assessing, now, the quality of the approximation obtained from the three different parsimonious 
models that were used, it is evident that the peak oriented hysteretic model provides the most reliable 
approximation in terms of interstorey drifts. This agrees with the comments made earlier, and provides 
tangible validation of the proposed third step in the calibration process for choosing the most 
appropriate parsimonious model. It is noted that the quality of approximation deteriorates for the 
response quantities of the third floor whereas the third floor’s response is significantly less non-linear 
than the response of the other two floors (see Figure 4.2 later). The former behavior in conjunction 
with the latter observation is attributed to the fact that the third floor is more sensitive to higher mode 
effects and that the calibration of the linear characteristics of the parsimonious model was established 
by matching only the fundamental natural period and modeshape of the high – fidelity structural 
model. It should be noted that the high value of the coefficient of determination, especially for the 
peak-oriented and Masing models, show that the parsimonious modeling approach captures very well 
the variability of the response for the ensemble of earthquakes. This characteristic is of particular 
importance for seismic risk estimation. As discussed in the introduction, this estimation requires 



evaluation of structural response for a large number of earthquake scenarios and it is more important 
to depict the overall variability correctly, rather than having small errors on scenario-by-scenario 
basis. 
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Figure 4.2. Normalized error for the maximum interstory drift response versus the maximum interstory drift 

response (obtained by the high – fidelity model) 
 
Figure 4.2 further shows the variation of the error between the corresponding maximum response drift 
of the high-fidelity model and the parsimonious model normalized by the respective response of the 
high-fidelity model versus that response, for each one of the selected ground motion records (sample 
plots). The y-axis in these figures corresponds to different levels of nonlinear response. As such the 
figures further allow for comparison of the errors established for different nonlinear response levels as 
well as identification of potential correlations. These figures indicate that the parsimonious modeling 
approach captures adequately well the global maximum response characteristics, since the individual 
errors are in general less than 25% for the interstory drift of the first two floors, with most excitations 
providing significantly smaller errors. Again a deterioration of the approximation for the responses of 
the third floor is verified, whereas the drifts in this floor are significantly smaller indicating smaller 
level of nonlinear behavior. The maximum individual errors range between 25% to 35%. Comparing 
the three parsimonious models, it is verified that the peak oriented model provides better 
approximation. Additionally there is no bias evident regarding the interstory drift of all the floors. The 
absence of any evident bias is another indication of the adequate accuracy achieved with the 
parsimonious modeling approach. Finally it should be pointed out that the figure indicates no 
correlation between having bigger errors with higher (or lower) response values; this correlation is 
judged by comparing the x-y axis distribution of the samples in the different plots. This further 
validates the accuracy of the parsimonious model for different regions of nonlinear response. 
 
Table 4.3. Comparison of average computational time per earthquake between the high fidelity model and the 
parsimonious models 

Model Computational time (sec) 
computational time of parsimonious model

computational time of high fidelity model
 

High - fidelity 671.2 1.0 
Peak - oriented 0.25 3.7·10-4 

Masing 0.17 2.5·10-4 
Elasto - plastic 0.30 4.5·10-4 

 
Finally for evaluating the computational efficiency of the parsimonious modeling approach, Table 4.3 
presents the average computational time per earthquake for the high fidelity model simulated in 
OpenSees and the parsimonious models. It is mentioned that in OpenSees the standard numerical time 
integration scheme used is the two parameter time-stepping method developed by Newmark, whereas 
in SIMULINK the fixed step Bogacki-Shampine solver algorithm was used. The time step used for 



both cases was equal to 0.01 sec. The great computational savings achieved of all the parsimonious 
models are obvious, since they turned to be up to 3948 times more efficient than the high – fidelity 
model at the expense of relatively small reduction in accuracy, as discussed earlier. 
 
5. CONCLUSIONS 
 
A parsimonious modeling approach for the hysteretic behavior of nonlinear structures utilizing the 
versatile SIMULINK modeling environment in MATLAB was discussed in this paper. The 
parsimonious models are established by globally describing the restoring force – interstory drift 
hysteretic relationship of each floor through introduction of nonlinear spring elements. Three different 
models for this hysteretic behavior were examined in the current study, and detailed discussion 
pertaining to their calibration using information from high-fidelity structural models was presented. In 
the proposed approach the linear properties of the parsimonious models are selected to match the 
fundamental structural mode, whereas the remaining characteristics of the hysteretic backbone 
behavior are chosen based on the behavior of the high-fidelity model under cyclic pushover analysis. 
The different parsimonious hysteretic models are finally evaluated by comparison to the response of 
the high fidelity model under sinusoidal loading, and the one providing the overall best fit is finally 
chosen. An illustrative example was presented for which the high-fidelity structural model was 
developed in the versatile OpenSees structural analysis software. The calibration steps were 
demonstrated and finally the accuracy of the parsimonious models was evaluated over a large 
ensemble of ground motion records by comparing to the results obtained from the high fidelity model. 
The results show that the parsimonious modeling within the SIMULINK environment offers great 
computational savings and provides results with good accuracy compared to the high fidelity 
predictions, which can additionally very well capture the variability of the response over the set of 
ground motion records considered. The latter is a very important result, since in seismic risk 
assessment we are primarily interested of adequately describing the response and its variability over a 
large number of excitation scenarios, rather than accurately describing that behavior for specific 
excitations. The peak oriented model was predicted in the calibration stage to provide a better fit to the 
high fidelity model and this was verified in the evaluation over the suite of excitations considered; it 
provided small average errors and very high accuracy in describing the variability of the seismic 
response. The Masing model also provided adequate accuracy results. Overall the study proved the 
efficiency of the proposed parsimonious modeling approach as well as of the calibration process 
proposed, and the computational advantages when this modeling framework implemented within the 
SIMULINK environment. 
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