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SUMMARY:  
Probabilistic approaches for comprehensive cost–effective design of viscous dampers for seismic hazard 
mitigation are gaining increasing attention within the engineering community, especially in the context of 
retrofitting strategies. A probabilistic framework is presented here that allows for explicit consideration in the 
design process of (i) all important nonlinearities for both the dampers and the structural behavior, as well as of 
(ii) all important sources of uncertainty related to the seismic hazard. The framework is based on an assembly-
based vulnerability approach for estimating earthquake losses and on stochastic ground motion models for 
describing the earthquake hazard. The life-cycle repair cost is quantified by its expected value over the space of 
the uncertain parameters for the structural and excitation models, and is estimated through stochastic simulation. 
For the design-optimization an algorithm appropriate for costly global optimization problems is adopted. An 
illustrative example is presented that shows the efficiency of the proposed methodology. 
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1.  INTRODUCTION 
 
Probabilistic approaches for comprehensive cost–effective design of viscous dampers for seismic 
hazard mitigation are gaining increasing attention within the structural engineering community, 
especially in the context of retrofitting strategies. A realistic treatment of such a design requires proper 
integration of (i) methodologies for treating the uncertainties related to the seismic hazard over the 
entire life–cycle of the building, (ii) tools for evaluating the performance using socioeconomic criteria, 
as well as (iii) algorithms appropriate for stochastic analysis and optimization. This work uses a 
simulation based framework that addresses all important challenges associated with these steps for the 
design of fluid viscous dampers for retrofitting of building structures. A probabilistic foundation is 
used to address the various sources of uncertainty and quantify the expected life-cycle cost which is 
comprised by the lifetime repair cost of the structure due to expected future seismic losses and the 
upfront cost of the damper devices. This is established by characterizing the relative plausibility of 
different properties of the system and its environment (representing future excitations) by probability 
models. An assembly based vulnerability approach is used to estimate the repair cost due to losses of 
future seismic excitations and a realistic probabilistic model is presented for the latter that also 
addresses the potential of the ground motion exhibiting forward directivity effects. In this probabilistic 
setting, stochastic simulation is adopted for estimating the life-cycle repair cost. Though robust, this 
choice makes the associated design-optimization challenging, as it involves a large computational 
burden. To alleviate this burden, an efficient algorithm belonging in the greater family of Costly 
Global Optimization (CGO) search techniques is adopted. For illustrating this approach an example is 
presented that considers the optimal performance-based design of fluid viscous dampers for a three-
story concrete structure.     
 
2.  PROBABILISTIC QUANTIFICATION OF LIFE-CYCLE COST 
 
For evaluation of seismic cost adoption of appropriate models is needed for the structural system 
itself, the earthquake excitation and loss evaluation (Figure 2.1). The combination of the first two 
models provides the structural response and in the approach adopted here this is established in terms 



of nonlinear time-history analysis. The loss evaluation model quantifies, then, earthquake performance 
in economic terms based on that response. The characteristics of these models are not known with 
absolute certainty. Uncertainties may pertain to (i) the properties of the structural system, for example, 
related to stiffness and damping characteristics; to (ii) the variability of future seismic events, i.e. the 
moment magnitude or the epicentral distance; to (iii) the predictive relationships about the 
characteristics of the excitation given a specific seismic event, for example duration of strong ground 
motion or peak ground acceleration; or to (iv) parameters related to the performance of the system, for 
example, thresholds defining fragility of system components. A probabilistic logic approach provides 
a rational and consistent framework for quantifying all these uncertainties through the entire life-cycle 
of the structure. In this approach, probability can be interpreted as a means of describing the 
incomplete or missing information about the system under consideration and its environment, 
representing the seismic hazard, through the entire life cycle. This leads ultimately to a design 
framework that can realistically and explicitly address all uncertainties involved in the modeling of the 
structure and its environment. 
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Figure 2.1. Augmented system model 

 
In this setting, consider a structural system that includes some controllable parameters that define the 

system design, referred to herein as design variables, 1 2[ , , ..., ]
n

n



    φ  , where Φ denotes 

the bounded admissible design space. For the application discussed here, φ consists of the design 
characteristics of the fluid viscous dampers. Let nΘ  θ  , denote the augmented vector of model 
parameters where Θ represents the space of possible model parameter values. Vector θ is composed of 
all the model parameters for the individual structural system, excitation, and performance evaluation 
models indicated in Figure 2.1. For addressing the uncertainty in θ a probability density function 
(PDF) p(θ), is assigned to it, quantifying the relative likelihood of different model parameter  values. 
This PDF incorporates our available knowledge about the structural system and its environment into 
the respective knowledge, and should be selected based on this knowledge (Jaynes, 2003). The 
favorability of the system response, given the values of the model parameters, is evaluated by the risk 

consequence measure   ( , ) : φn x nh  φ θ   , representing the expected utility from a decision-
theoretic point of view: 
 

( , ) ( , ) ( , )in lifh C C φ θ φ θ φ θ                  (2.1) 

 
where ( , )inC φ θ  corresponds to the initial cost and ( , )lifC φ θ  to the additional cost over the lifetime 

of the structure. The expected life-cycle cost ( )C φ  is then simply given by: 
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where [.]Eθ denotes expectation with respect to the PDF for the model parameter vector θ. The life-

cycle cost design problem requires determination of the optimal design parameters φ*: 
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where fc(φ) is a vector of deterministic constraints, related, for example, to location or space 
constraints for the dampers. Note that in this formulation, all performance requirements against future 
natural hazards are directly incorporated in the objective function. Finally, the constraints in (2.3) may 
be incorporated into the definition of admissible design space Φ, which leads to the simplified 
expression: 
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φ

φ φ                                (2.4) 

 
For evaluation of (2.2) and optimization (2.4), an approach based on stochastic simulation will be 
discussed in Section 6.  
 
3.  INITIAL COST OF THE FLUID VISCOUS DAMPERS 
 
The initial cost in (2.1) corresponds to the cost of the dampers and it is estimated based on their 
maximum force capacity for each story Fud,i, i = 1,…,n, where n is the number of stories of the 

structure. The force of the damper FD is given by sgn( )D D D DF C x x
   , where CD is the damper 

coefficient, Dx  is the damper velocity and α is the velocity exponent. The design variables of the 

optimization problem can be, in general, the damper coefficients CD,i and the velocity exponents αi. 
The maximum force capacity of a damper Fud,i is typically the maximum force the damper is expected 
to develop under the maximum credible earthquake defined for the project (TaylorDevices, 2012). 
Therefore, for a given configuration of CD,i and αi, the maximum force capacity Fud,i can be calculated 
by selecting an appropriate reference velocity, which is representative of the velocity corresponding to 
the maximum credible earthquake considered. Here, the reference velocity is defined as corresponding 
to a certain probability of exceedance (for a given damper selection) based on the probabilistic seismic 
hazard description. After the damper capacities have been determined the evaluation of ( , )inC φ θ  is 

relatively straight-forward; it can be performed using data for existing commercial devices.  
 
4.  LOSS ESTIMATION METHODOLOGY 
 
For estimating earthquake losses the comprehensive methodology described in (Porter et al., 2001) 
and in (Goulet et al., 2007) is adopted. In this methodology the nonlinear time-history response of the 
structure under a given excitation is used to calculate the damage in a component level. For the direct 
losses, the components of the structure are grouped into nas damageable assemblies. Each assembly 
consists of components of the structural system that have common characteristics with respect to their 
vulnerability and repair cost. Such assemblies may include, for example, beams, columns, wall 
partitions, contents of the building, and so forth. For each assembly j=1,…,nas, nd,j different damage 
states are designated and a fragility function is established for each damage state dk,j, k=1,…,nd,j. These 
functions quantify the probability Pe[dk,j|EDPj,φ,θ] that the component has reached or exceeded its kth 
damage state, conditional on some engineering demand parameter (EDPj) which is related to the time-
history response of the structure (for example, peak transient drift, peak acceleration, etc.). Damage 
state 0 is used to denote an undamaged condition. A repair cost Ck,j is then assigned to each damage 
state, which corresponds to the cost needed to repair the component back to the undamaged condition. 
The expected losses in the event of the earthquake are given by: 
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where P [dk,j|φ,θ] is the probability that the assembly j will be in its kth damage state and the explicit 
dependence on EDPj has been dropped since in the framework considered here knowledge of the 
design and model parameter values leads to estimation of EDPj. The probability P [dk,j|φ,θ] may be 
readily obtained from the information from the fragility curves: 
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5.  EXCITATION MODEL 
 
The life-cycle assessment framework discussed here requires development of a probabilistic model of 
the entire ground motion time history that will adequately describe the uncertainty in future 
earthquake events. Additionally, for the comprehensive characterization of the seismic hazard 
consideration of the probability of occurrence of a forward-directivity pulse at the beginning of the 
velocity time history is required, as such type of excitations, observed in near-fault distances 
(Somerville, 2003),  have caused severe damage in structural systems. Therefore, in this study the 
potential of pulse occurrence in near-fault ground motions is taken into account, through calculation of 
the probability of occurrence of this velocity pulse, for specified earthquake and site characteristics 
(Iervolino and Cornell, 2008, Shahi and Baker, 2011). A stochastic model for pulselike excitations is 
briefly discussed next: according to it, the high-frequency and long period components of the motion 
are independently modeled and then combined to form the acceleration time history. 

5.1.  High-frequency component 

 
For modeling the higher-frequency (>0.1-0.2 Hz) component of ground motions, the point source 
stochastic method (Boore, 2003) is chosen here. This approach is based on a parametric description of 
the ground motion’s radiation spectrum  A(f;M,r), which is expressed as a function of the frequency, f, 
for specific values of the earthquake magnitude, M, and the closest distance to the rupture surface r. 
This spectrum consists of many factors which account for the spectral effects from the source (source 
spectrum) as well as propagation through the earth’s crust up to the structural site. The duration of the 
ground motion is addressed through an envelope function e(t;M,r), which again depends on M and r. 
These frequency and time domain functions, A(f;M,r) and e(t;M,r), completely describe the model, 
and their characteristics are provided by predictive relationships that relate them directly to the 
seismic hazard, i.e. to M and r. More details about them are provided in (Taflanidis et al., 2008, 
Boore, 2003). In particular, the two-corner point-source model by Atkinson and Silva (Atkinson and 
Silva, 2000) can be selected for the source spectrum because of its equivalence to finite fault models. 
The time history (output) for a specific event magnitude, M, and source distance, r, is obtained 
according to this model by modulating a white-noise sequence Zw = [Zw(iΔt):i=1,2,…,NT] by e(t;M,r) 
(in the time domain) and subsequently by A(f;M,r) (in the frequency domain). The model parameters 
consist of the seismological parameters, M and r, describing the seismic hazard, the white-noise 
sequence Zw, and the predictive relationships for A(f;M,r) and e(t;M,r). 

5.2.  Long-period pulse 

 
For describing the pulse characteristics of near-fault ground motions, the simple analytical model 
developed by Mavroeidis and Papageorgiou is selected (Mavroeidis and Papageorgiou, 2003). 
According to it, the pulse component of near-fault motions is described through the following 
expression for the ground motion velocity pulse: 
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  (5.1) 



 
where Ap, fp, vp, γp and to describe the signal amplitude, prevailing frequency, phase angle, oscillatory 
character (i.e. number of half cycles), and time shift to specify the envelope’s peak, respectively. 
These pulse characteristics can be estimated by predictive relationships that connect them to the 
seismic hazard of a site. In this study the predictive equations proposed by (Dabaghi et al., 2011) are 
used.  These empirical equations link the pulse parameters to the following earthquake and site 
characteristics: the type of faulting (strike-slip or non strike-slip), the moment magnitude, M, the shear 
wave velocity in the top 30m of soil at the site, Vs30, the epicentral distance Repi, the closest distance to 
fault rupture, r, the length of rupture between the fault and the site, s, and the angle between the strike 
of the fault and the line joining epicenter and the site, θ. Figure 5.1 illustrates the source-to-site 
parameters r, Repi, θ, s and the rupture length L, for the case that the site is located before (left) and 
after (right) of the end of the rupture length for a strike-slip fault. The rupture length is estimated by 
the predictive equation proposed by (Wells and Coppersmith, 1994) 
 

10log ( ) 3.55 0.74 LL M e                      (5.2) 

 
where eL is a prediction error following Gaussian distribution with zero mean and a specified standard 
deviation. Additionally, since not all the near-fault ground motions exhibit this long period pulse, the 
probability of occurrence of the velocity pulse is calculated using the predictive equation for strike-
slip faults proposed by (Shahi and Baker, 2011) 
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5.3.  Near-fault ground motion 

 
The stochastic model for near-fault motions is finally established by combining the above two 
components through the methodology initially developed in (Mavroeidis and Papageorgiou, 2003). 
The following procedure describes the final model: apply the point-source stochastic method to 
generate an acceleration time history; generate a velocity time history for the near-field pulse using 
(5.1), and shift the pulse in time to coincide with the peak of the envelope e(t;M,r) (this defines the 
value of the time shift parameter to); differentiate the velocity time series to obtain an acceleration 
time series and subtract its Fourier amplitude from the Fourier amplitude of the time history generated 
by the point-source stochastic method; construct a synthetic acceleration time history so that its 
Fourier amplitude is the one corresponding to this difference and its Fourier phase coincides with the 
phase of the time history generated by the point-source stochastic method; finally, superimpose the 
latter time history with that of the near-fault pulse.   
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Figure 5.1. Source to site geometry for strike-slip faults 

 



6.  LIFE-CYCLE COST OPTIMAL DESIGN: STOCHASTIC ANALYSIS AND 
OPTIMIZATION 
 
The system, excitation and performance evaluation models described earlier lead to quantification of 
the performance measure h(φ,θ), conditional on the values for the model parameters θ and the design 
configuration φ. The optimization in (2.4) requires, additionally, the evaluation of the integral 
corresponding to the objective function. Since the nonlinear models considered are complex and 
include a large number of uncertain model parameters, this high-dimensional integral cannot be 
calculated, or even accurately approximated, analytically. An efficient alternative approach is to 
estimate the integral by stochastic simulation (Robert and Casella, 2004). Using a finite number, N, of 
samples of θ drawn from some importance sampling density pis(θ), an estimate for (2.2) is given by 
the stochastic analysis: 
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where ΩN = [θ1,..., θΝ] is defined as the sample set, and vector θi denotes the sample of the uncertain 
parameters used in the ith simulation. As N  , then Ĉ→C but even for finite, large enough N, 
(6.1) gives a good approximation for (2.2). The importance sampling density  pis(θ) may be used to 
improve the efficiency of this estimation (Robert and Casella, 2004), by focusing the computational 
effort on regions the Θ space that contribute more to integrand of the stochastic integral, i.e., by 
selecting a proposal density that resembles the integrand of (2.2). For problems with a large number of 
model parameters, such as the application discussed here, choosing efficient importance sampling 
densities for all components of θ is challenging; thus it is preferable to formulate importance sampling 
densities only for the important components of θ, i.e. the ones that have biggest influence on the 
seismic risk, and use pis(.) = p(.) for the rest. For seismic risk applications the characteristics of the 
hazard, especially the moment magnitude is generally expected to have the strongest impact on the 
calculated risk (Taflanidis and Beck, 2009), so selection of importance sampling densities may 
preliminary focus on it. Finally, using the estimate in (6.1) the optimal design choice is then given by 
the optimization under uncertainty: 
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In this study an exterior sampling approximation (ESA) is adopted for this stochastic design problem. 
ESA adopts the same stream of random numbers throughout all iterations in the optimization process, 
thus transforming problem (6.2) into a deterministic system design problem, which can be solved by 
any appropriate deterministic optimization algorithm. Still, the estimate of the objective function for 
this optimization involves significant computational cost since N evaluations of the model response 
are needed for each stochastic analysis. This feature make the optimization problem challenging. An 
efficient search technique, belonging in the greater family of costly global optimization, CGO, 
algorithms (Holmstrom et al., 2009), is used which utilizes response surface approximations for the 
objective function. For implementing this approach the powerful optimization toolbox TOMLAB 
(Holmstrom et al., 2009) is adopted here. 
 
7.  ILLUSTRATIVE EXAMPLE 
 
For the illustrative example, a three-story reinforced concrete office building with nonlinear fluid 
viscous dampers is considered. The dimension of the building is 32 x 36 m and the height of each 
story is 4.0 m. The shear wave velocity in the top 30m of the soil at the site, Vs30, is assumed to be 310 
m/sec, which corresponds to generic soil conditions, while the type of the fault is assumed to be strike 
–slip. The design variables in this problem correspond to the damper coefficients in each story CD,i, i = 
1,2,3. The damper capacities Fud,i are calculated by assuming that the velocity exponents for each αi 
are equal to 0.5, a value which corresponds to highly nonlinear behavior of the dampers, and that the 
reference velocity discussed in Section 3 is equal to the one that has 1% probability of exceedance. 



7.1.  Structural and excitation models 

 
A planar frame model (illustrated in Figure 7.1) with peak oriented hysteretic behavior and 
deteriorating stiffness and strength is assumed. The median value for the lumped masses of all the 
stories are [mi] = [976, 932, 887] metric tons, i=1,2,3. All three masses are assumed uncertain, 
following a log-normal distribution with coefficient of variation (c.o.v.) 10%. The initial inter-story 

stiffnesses ki of all the stories are parameterized by ,
ˆ

i i k ik k , i=1,2,3, where  [ ˆ
ik ] = 789.02[1.00, 

0.85, 0.70] MN/m are the most probable values and θk,i are nondimensional uncertain parameters, 
assumed to be correlated Gaussian variables with mean value one and covariance matrix with 
variances 0.10 for all the floors and correlation coefficients 0.5 between adjacent floors and 0.2 
between first and third floor. For each story, the post-yield stiffness coefficients ai, stiffness 
deterioration coefficient βi, over-strength factor γi, ductility coefficient μi, and yield displacement δy,i 

have median values 0.1, 0.2, 4 and 0.5% of story height, respectively (see Figure 7.1 for proper 
definition of some of these parameters). All these parameters are treated as independent log-normal 
variables with c.o.v. 10%. Additionally, a residual strength is assumed equal to 10% of the maximum 
strength. The structure is assumed to be modally damped. The damping ratios for all modes are treated 
as log-normal variables with median values 5% and c.o.v. 30%. 
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Figure 7.1. Structural model 

 
Seismic events are assumed to occur following a Poisson distribution and so are independent of 
previous occurrences. The uncertainty in moment magnitude M is modeled by the Gutenberg-Richter 
relationship truncated on the interval [Mmin, Mmax] = [5.0, 8.0], leading to the PDF and expected 
number of events per year given, respectively, by (Kramer, 2003): 
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                 (7.1) 

 
Only events with magnitude greater than M>5.0 are considered since earthquakes with smaller 
magnitude are not expected to lead to significant damage to the structure and thus will not contribute 
significantly to the expected life-cycle cost. The regional seismicity factors are selected as 
b=0.9loge(10) and a=4.35loge(10), leading to v=0.25. Following discussion of Section 6 importance 
sampling density was used only for M; it was used a truncated on the interval [Mmin, Mmax] Gaussian 
PDF with mean value 6.8 and standard deviation 1. For the uncertainty in the event location and 
orientation with respect to the fault, the epicentral distance Repi, for the earthquake events is assumed 
to follow a log-normal distribution with median 22 km and c.o.v. 0.4, whereas the angle between the 
strike of the fault and the line joining epicenter and the site, θ, is assumed to follow a Beta distribution 
with parameters abeta=1.73 and bbeta=4.07. The prediction error eL for the rupture length is treated as a 
Gaussian variable with zero mean and standard deviation 0.23. Parameters r and s can be derived from 
the source to site geometry as depicted in Figure 5.1. 



7.2.  Expected life-cycle cost 

 
The initial cost in (2.1) corresponds to the cost of the dampers and it is estimated based on their 

maximum force capacity Fud,i, as 1.207
, ,( ) $ (0.77(F ) 2806)init i ud iC  φ . This approximate cost 

equation has been derived by fitting to a curve of some commercially-available dampers 
(TaylorDevices, 2012). The constant term in the above equation corresponds to installation cost of the 
dampers. The lifetime cost corresponds to the present value of the losses from future seismic events 

which is calculated by  ( , ) ( , ) 1 d lifer t

lif life d lifeC L vt e r t   φ θ φ θ , where rd is the discount rate 

(assumed here 2.5%), tlife is the lifetime of the structure (taken 60 years) and L(φ,θ) is the expected 
cost given the occurrence of an earthquake event. The earthquake damage and loss are calculated 
assuming that after each event the structure is quickly restored in its undamaged state. 
 
Table 7.1. Characteristics of fragility functions and expected repair cost for each story 

dk..j xm bm nel $/nel 

Structural components 
1(light) 1.2δy,i 0.20 42 2000 
2(moderate) (δy,i + δp,i)/2 0.35 42 9625 
3(significant) δp,i 0.40 42 18200 
4(severe) δu,i 0.40 42 21600 
5(collapse) 5% 0.50 42 34300

Contents 
1(damage) 0.70g 0.30 50 500 

Partitions
1(small cracks) 0.25% 0.70 640 m2 3.14 
2(extensive cracks) 0.6% 0.50 640 m2 48.44 
3(severe damage) 1.4% 0.40 640 m2 107.64

Acoustical ceiling 
1(some tiles fallen) 0.55g 0.40 500 m2 5.38 
2(extensive tile fallout) 1.00g 0.40 500 m2 25.79 

Paint 
1(damage) 0.33% 0.2 640 m2 21.53 
 
The earthquake losses L(φ,θ) are calculated according to the methodology presented in Section 4. 
Each fragility function is a conditional cumulative log-normal distribution with median xm and 
standard deviation bm, as described Table 7.1, which also presents the expected cost per element $/nel, 
where nel corresponds to the number of elements that belong to each damageable assembly in each 
direction of each of each floor. For structural components, partitions and paint the maximum 
interstory drift is used as the EDP, while for the rest the maximum story absolute acceleration is used 
as the EDP. The fragility curves used are similar to the ones selected in (Goulet et al., 2007) for all 
damageable subassemblies except for the structural components. For the latter the fragility curves are 
chosen with respect to the characteristics of the backbone curve for the restoring force in each story. 
Therefore, a direct link is established between the fragility curves and the stiffness and strength 
characteristics of the structural model, considering their associated uncertainties. 

7.3.  Results and discussion 

 
The number of evaluations, N, of the model response for each damper configuration is selected to be 
N=2000. It is noted that approximately only 22% of the generated sample excitation  time-histories 
exhibit the long period velocity pulse, as a consequence of the incorporation in the excitation model of 
the probability of occurrence of a pulse (5.3), given the earthquake and site characteristics. The 
damper coefficients in each floor are the three design variables φ = [CD,i: i = 1,2,3]. The initial design 
space for each variable is set to [12 20] MN/(m/sec)0.5 for CD,1, [8.4 14] MN/(m/sec)0.5  for CD,2 and [6 
10] MN/(m/sec)0.5 for CD,3. Table 7.2 presents cumulative results from the optimization, which 
includes the optimal design configuration φ*, the maximum force capacities of the dampers for this 



configuration, the total life cycle cost C(φ*), the upfront cost of the dampers Cinit(φ
*) and the repair 

cost for the lifetime of the structure Clif(φ
*,θ), as well as the total life cycle cost for the structure 

without retrofitting (CD,i = 0). The results illustrate the fact that retrofitting of the structure with fluid 
viscous dampers leads to a significant reduction of the total life-cycle cost (≈ 22% of the cost of the 
structure without dampers). The latter result verifies that the addition of the damper devices can 
significantly reduce the interstory drifts and absolute accelerations of the structural system and 
consequently minimize the damage to the structural and non-structural components.   
 
Table 7.2. Optimization results; the units for CD,i are kN/(m/sec)0.5 

Case φ*  Fud,i (kN) *ˆ ( ) ($)C φ  Cinit(φ
*) ($) Clif(φ

*,θ) ($) 

Dampers 
CD,1 18407.72 7123 

115710 79588 36119 CD,2 12189.28 4380 
CD,3 6528.64 2014

No dampers - - 522,030 0 522,030 
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Figure 7.2. (a) Details about life-cycle cost; (b) Distribution of life-cycle cost to the different floors 

 
Figure 7.2 (a) reports the distribution of the life-cycle cost and the lifetime repair cost for both the 
structure with and without the fluid viscous dampers. It can be observed that the retrofitting of the 
structure changes significantly the distribution of the lifetime repair cost over the different 
components, since the addition of the dampers increases considerable the relative importance of the 
acceleration sensitive components, while it reduces the importance of the drift sensitive components. 
The latter behavior is expected, since the addition of the dampers results in the increase of the amount 
of energy dissipated by the system and consequently to the reduction of the interstory drifts. It is 
interesting to note the significant reduction of the contribution to the cost related with the structural 
components, which is an indication of the efficiency of the retrofitting of the structure. Figure 7.2(b) 
illustrates the distribution of the lifetime repair cost and the cost of the dampers over the three stories 
of the retrofitted building.  
 
Additionally, the contribution of the cost of each floor to the total life-cycle cost is presented. The 
contribution of the damper cost to the total cost of each floor slightly decreases from the 1st to the 2nd 
floor, whereas its reduction is more evident for the 3rd floor. This trend is expected and can be 
attributed to the fact that in general the shear demands are higher in the lower floors; thus dampers 
with higher force capacities are required in order to dissipate the seismic energy induced in the lower 
floors.       
 



8.  CONCLUSIONS 
 
The robust (with respect to structural and excitation uncertainties) optimal performance-based design 
of fluid viscous dampers for a three-story concrete structure was discussed in this study. The life-cycle 
cost was adopted as the performance objective. The basis of the suggested approach is a probabilistic 
framework that explicitly addresses all sources of uncertainty related either to future excitations or to 
the structural configuration, by appropriate probability models. In this setting the expected life-cycle 
cost is ultimately expressed through a multi-dimensional integral and stochastic simulation is 
suggested for its evaluation. Though robust, this choice makes the associated design-optimization 
challenging, as it involves a large computational burden. To alleviate this burden, an efficient 
algorithm belonging in the greater family of Costly Global Optimization (CGO) search techniques is 
adopted here. An illustrative example was presented that considered the optimal design of nonlinear 
fluid viscous dampers for minimizing the expected life-cycle cost of a three-story concrete structure. 
The addition of the dampers was shown to significantly improve the structure’s performance by 
reducing its life-cycle cost. 
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