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SUMMARY: 
In the recent years, neural networks are considered as the best candidate for fast approximation with arbitrary 
accuracy in the time consuming problems. Dynamic analysis of structures against earthquake has the time 
consuming process. In this study we employ two kinds of neural networks: Generalized Regression neural 
network (GR) and Back-Propagation Wavenet neural network (BPW), for approximating of dynamic time 
history response of frame structures. GR is a traditional radial basis function neural network while BPW is 
categorized as a wavelet neural network. In BPW, sigmoid activation functions of hidden layer neurons are 
substituted with wavelets and weights training are achieved using scaled conjugate gradient (SCG) algorithm. 
Comparison the results of BPW with those of GR in the dynamic analysis of eight story steel frame indicates 
that accuracy of the properly trained BPW is better than that of GR and therefore, BPW can be efficiently used 
for approximate dynamic analysis of structures.   
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1. INTRODUCTION 
 
As modern digital computers are developed, neural network techniques are considered to use 
effectively for simplification of complex problems with large number of computations. Dynamic time 
history analysis of large-scale structures is one of the time consuming problems with complex 
calculations. In the present study, generalized regression neural networks (GR) and back-propagation 
wavenet neural networks (BPW) have been employed for approximating of dynamic time history 
response of an eight stories steel frame structure. Approximating of structural dynamic analysis is 
very useful in some applications such as optimization. In the neural networks context, two types of 
activation functions are commonly used:  global and local.  Global activation functions are active over 
a large range of input values and provide a global approximation to the empirical data.  Local 
activation functions are active only in the immediate vicinity of the given input value. It is well 
known that functions can be represented as a weighted sum of orthogonal basis functions.  Such 
expansions can be easily represented as neural networks by having the selected basis functions as 
activation functions in each hidden neuron, and the coefficients of the expansion as the weights on 
each output neuron. Several classical orthogonal functions, such as sinusoids, sigmoidal functions, 
etc., but most of them are global approximators and suffer, therefore, from the disadvantages of 
approximation using global functions. A special class of functions, known as wavelets, possesses 
good localization properties. Thus, they may be employed as the activation functions of a neural 
network known as the Wavelet Neural Network or wavenet. Wavenets possess a unique attribute:  In 
addition to forming an orthogonal basis are also capable of explicitly representing the behavior of a 
function at various resolutions of input variables. The pivotal concept, in the formulation and design 
of neural networks with wavelets as basis functions, is the multiresolution representation of functions 
using wavelets.  It provides the essential framework for the completely localized and hierarchical 
training afforded by wavelet neural networks. To create back-propagation wavenet we substitute 
sigmoidal activation function of hidden layer neurons with a wavelet function. To train GR and BPW 



 

a unique training set have been used. Testing of these neural networks indicates that accuracy of BPW 
is higher than GR and it can be substitute effectively with exact dynamic analysis of structures.  
 
 
2. NEURAL NETWORKS 
 
In the last decade, artificial intelligence techniques have emerged as a powerful tool that could be 
used to replace time-consuming procedures in many scientific or engineering applications. The 
interest showed to neural networks is mainly due to their ability to process external data and 
information basing on past experiences. In a neural network the transmission and the processing of the 
input data are assigned to a network of simple computing units, called neurons. Each neuron returns 
an output signal when the weighed sum of the inputs exceeds an activation value. The output value is 
computed by defining a transfer or activation function. The principal advantage of a properly trained 
neural network is that it requires a trivial computational burden to produce an approximate solution. 
Such approximations appear to be valuable in situations where the actual response computations are 
intensive in terms of computing time and a quick estimation is required. For each problem a neural 
network is trained utilizing information generated from a number of properly selected analyses. The 
data from these analyses are processed in order to obtain the necessary input and output pairs, which 
are subsequently used to produce a trained neural network. One of the most important characteristics 
of neural networks is learning. Learning may be supervised or unsupervised depending on the 
topology of networks. Therefore, topology, training or learning method and kind of activation 
function of neurons are its basic characteristics. Neural networks have two operation modes, training 
mode and normal mode. In the training mode, adjustable parameters of the networks are modified. In 
the normal mode, the trained networks are applied for simulating of outputs. In various engineering 
problems, many neural networks are widely used.   
 
2.1. Generalized Regression Neural Network 
 
Generalized Regression neural network (GR) are powerful and interesting networks due to their rapid 
training, generality and simplicity. GR that is developed by Specht subsumes the basis function 
methods. GR is two layers feed forward network. The hidden layer consists of radial basis function 
neurons with Gaussian activation functions. The response function of neurons of output layer is linear.  
First layer of GR has as many neurons as there are input-target vectors in the training set. Weighted 
input of hidden layer neurons is the distance between the input vector and its weight vector. Output of 
Each hidden neurons is its input passed through radial basis activation function. The second layer also 
has as many neurons as target vectors. The neurons in second layer act on hidden layer neurons using 
linear performance function. 
 
This network does not require iterative training therefore training of these networks is very fast. The 
structure of GR is such designated that transpose of input matrix and transpose of desired output 
(target) matrix are chosen as first layer and second layer weight matrixes, respectively. GR algorithm 
is based on nonlinear regression theory, a well-established statistical technique for function estimation 
GR network is very good at interpolation.      
 
2.2. Back-Propagation Neural Network 
 
Back-Propagation was created by generalizing the Widrow-Hoff learning rule to multiple layer 
networks and nonlinear differentiable transfer functions. Input vectors and the corresponding target 
vectors are used to train a network until it can approximate a function, associate input vectors with 
specific output vectors. Networks with a sigmoid layer, and a linear output layer are capable of 
approximating any function with a finite number of discontinuities. 
 
Standard back-propagation is a gradient descent algorithm, as is the Widrow-Hoff learning rule, in 
which the network weights are moved along the negative of the gradient of the performance function. 
The term back-propagation refers to the manner in which the gradient is computed for nonlinear 



 

multilayer networks. There are a number of variations on the basic algorithm that are based on other 
standard optimization techniques, such as conjugate gradient and Newton methods. In this study we 
have employed Scaled Conjugate Gradient (SCG) algorithm was developed by Moller. The basic 
back-propagation algorithm adjusts the weights in the steepest descent direction (negative of the 
gradient). This is the direction in which the performance function is decreasing most rapidly. It turns 
out that, although the function decreases most rapidly along the negative of the gradient, this does not 
necessarily produce the fastest convergence. In the conjugate gradient algorithms a search is 
performed along conjugate directions, which produces generally faster convergence than steepest 
descent directions. Each of the conjugate gradient algorithms requires a line search at any iteration. 
This line search is computationally expensive, since it requires that the network response to all 
training inputs be computed several times for each search. The scaled conjugate gradient algorithm 
(SCG) was designed to avoid the time-consuming line search.  
 
 
3. WAVENETS  
 
The term wavelet as it implies means a little wave. This little wave must have at least a minimum 
oscillation and a fast decay to zero, in both the positive and negative directions, of its amplitude. This 
property is analogous to an admissibility condition of a function that is required for the wavelet 
transform sets of wavelets are employed to approximate a signal and the goal is to find a set of 
daughter wavelets constructed by a dilated and translated original wavelets or mother wavelets that 
best represent the signal. The daughter wavelets are generated from a single mother wavelet )(th by 
dilation and translation: 
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Where a > 0 is the dilation factor, b is the translation factor and c is correction factor. Wavelet neural 
networks employing wavelets as the activation functions recently have been researched as an 
alternative approach to the neural networks with sigmoidal activation functions.  
 
The combination of wavelet theory and neural networks has lead to the development of wavelet 
networks. Wavelet networks are feed-forward neural networks using wavelets as activation function. 
In wavelet networks, both the position and the dilation of the wavelets are optimized besides the 
weights.  
 
Wavenet is another term to describe wavelet networks. Originally, wavenets did refer to neural 
networks using wavelets. In wavenets, the position and dilation of the wavelets are fixed and the 
weights are optimized .  
 
3.1. Back-Propagation Wavenet  
 
Back-propagation (BP) neural network is now the most popular mapping neural network. But BP 
neural network has few problems such as trapping into local minima and slow convergence. Wavelets 
are a powerful tool for signal analysis. They can approximately realize the time-frequency analysis 
using a mother wavelet. The mother wavelet has a square window in the time-frequency space. The 
size of the window can be freely variable by two parameters. Thus, wavelets can identify the 
localization of unknown signals at any level. Activation function of hidden layer neurons in back-
propagation network is a sigmoidal function shown in Fig.1(a). This type of activation function 
provides a global approximation on the search space. In this study we have substituted hidden layer 
sigmoidal activation function of back-propagation neural network with POLYWOG1 wavelet:  
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Diagram of POLYWOG1 with 1=a and 0=b is shown in Fig.1(b). 

 

(a)  

(b)  
 

Figure.1. (a): Sigmoidal function , (b): POLYWOG mother wavelet. 
 

This type of activation function provides a local approximation to the experimental data. In back-
propagation wavenets (BPW), the position and dilation of the wavelets as activation function of 
hidden layer neurons are fixed and the weights of network are optimized using scaled conjugate 
gradient (SCG) algorithm. In this study we suppose 2=a  and 0=b . 
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Therefore, BPW is a modified back-propagation neural network with local approximation property 
and POLYWOG1 hidden layer neurons activation function. And adjusting the weights of network are 
done using scaled conjugate gradient (SCG) algorithm. Structure of BPW is shown in Fig.2.  
 

 
 

Figure.2. Structure of BPW. 



 

 
 
4. NUMERICAL RESULTS  
 
4.1. Methodology 
 
The eight story steel frame structure that shown in Fig.3, has been considered as this study model. In 
this model, rigid diaphragms are assigned to the roofs. Cross sections of columns and beams are 
selected from the wide flange sections available in european profile list. The model was subjected to 
seismic load. This seismic loading that consists of Naghan earthquake 1977 (IRAN), shown in Fig.4, 
is effectively used in x direction. Spans in x and y directions are 4 m. Height of each story is 3 m. the 
sum of dead load and live load is 500 kg/m2 and masses are calculated from loads. Analysis is 
performed using SAP2000 developed by Wilson . 
 

 
 

Figure.3. Eight Story Steel Frame Structure. 
 
In order to simplify the analysis, 4 types of cross sections are considered for the columns and a unique 
one is considered for all beams that are shown in Table 4.1. Due to practical demands the columns are 
divided into 4 groups, shown in Table 4.2, having the same cross-sections. In the present study, we 
train GR and BPW neural networks for approximating the last story time history response in x 
direction, using MATLAB. To approximae the time history responses of the other stories, the same 
procedure can be used.  A total number of 39 structures are generated and analyzed from which 30 
structures are used for training and 9 pairs are employed for testing the networks which are shown in 
Table 4.3.  

 
 



 

Figure.4. Naghan Earthquake 1977 (IRAN). 
 
Table 4.1. Cross Sections 
Code Columns Beams 

1 
2 
3 
4 

HE 500-M 
HE 600-M 
HE 700-M 
HE 800-M 

2IPE 500 

 
Table 4.2. Grouping of Elements 
Group Elements 

1 
2 
3 
4 

Story 1,2 Columns  
Story 3,4 Columns 
Story 5,6 Columns 
Story 7,8 Columns 

 
Table 4.3. Test Vectors 

NO. 
Cross Section 

Group 1  Group 2  Group 3  Group 4  
1 
2 
3 
4 
5 
6 
7 
8 
9 

HE 600-M 
HE 700-M 
HE 700-M 
HE 700-M 
HE 800-M 
HE 800-M 
HE 800-M 
HE 800-M 
HE 800-M 

    HE 600-M 
HE 600-M 
HE 700-M 
HE 600-M 
HE 600-M 
HE 700-M 
HE 700-M 
HE 800-M 
HE 800-M 

HE 600-M 
HE 500-M 
HE 600-M 
HE 600-M 
HE 600-M 
HE 600-M 
HE 700-M 
HE 700-M 
HE 800-M 

HE 500-M 
HE 500-M 
HE 500-M 
HE 600-M 
HE 500-M 
HE 600-M 
HE 600-M 
HE 700-M 
HE 600-M 

 
4.2. Dynamic Analysis Using Neural Networks 
 
Trained GR and BPW neural networks are employed for approximating of the last story time history 
response. The results of testing the networks are shown in Figs. 5. to 10. for three test samples. 
Similar results exist for the other test samples. As shown in these Figs accuracy of BPW is much 
better than that of GR, furthermore, the accuracy of GR results in the case of some test vectors, such 
as 5th to 9th test vectors, are very poor. Therefore, GR cannot be effectively employed for 
approximating the time history response of frame structures.  
 

 
 

Figure.5. 7th approximate response by GR 
 



 

 
 

Figure.6. 7th approximate response by BPW 
 

  
 

Figure.7. 8th approximate response by GR 
 

 
 

Figure.8. 8th approximate response by BPW 
 



 

  
 

Figure.9. 9th approximate response by GR 
 

 
 

Figure.10. 9th approximate response by BPW 
 
To present the BPW network results, the approximate responses of last story of the frame structure are 
divided to five intervals. These intervals are considered as the first to fifth seconds of the response 
curves. Average error in each interval is shown in Table 4.4. 
 
Table 4.4. Average Error of BPW approximate results 

NO. 
Average Error (%) 

Second 1 Second 2 Second 3 Second 4 Second 5 

1 
2 
3 
4 
5 
6 
7 
8 
9 

4.7990 
1.7034 
2.4762 
3.1803 
2.4398 
1.5857 
1.2471 
0.6620 
0.4410 

0.0824 
0.1516 
0.5240 
0.5454 
0.2375 
0.6429 
0.6051 
0.2751 
0.3260 

0.5851 
0.9572 
3.2540 
3.8332 
4.4650 
1.2840 
1.0279 
0.1034 
0.4729 

4.0870 
2.4490 
3.1960 
3.7982 
3.5863 
4.4920 
4.2412 
2.7020 
3.5140 

10.340 
9.5460 
8.9042 
8.6507 
8.6130 
9.4294 
6.1460 
5.2512 
5.5110 

 
As shown in Table 4.4, the average of error in the first to fourth seconds of all approximate time 
history response is less than 5%. While the average error in the fifth second experiments its maximum 
values. These results indicate that the properly trained BPW network has acceptable accuracy and can 
be effectively used for approximating the time history response of frame structures.  
 



 

 
5. CONCLUSION 
 
Computational burden of dynamic analysis of frame structures for earthquake loads, is usually very 
high. In order to reduce the computational work, one of the best choices is neural networks. We have 
employed two various kinds of neural networks: generalized regression (GR) networks as a traditional 
neural network and back-propagation wavenet (BPW) network as a wavelet neural network for 
approximating the dynamic time history response of frame structures. Approximation strategy in GR 
network is global and in BPW network is local. Comparison of GR and BPW networks results in the 
approximation of dynamic time history response of frame structures against the earthquake indicates 
that BPW network using local approximation strategy is a powerful network with high accuracy. 
While GR network that employ global approximation strategy cannot present proper accuracy. 
Therefore, BPW network using wavelets as activation function of back-propagation neurons is a 
powerful tool for approximating of dynamic analysis of structures.  
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