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SUMMARY: 
Two degrees of freedom PID control algorithm consists of two PID systems that have different signal errors. The 
input signal error can be the output response, expected response or difference between them. In this article, 
single degree of freedom PID control and two degrees of freedom PID control are used as control algorithms. An 
active tuned mass damper is used for the reduction of vibration of a single degree of freedom system subjected to 
base excitation. Simulations are performed in MATLAB environment and the results for these two methods 
obtained and compared to each other. The results reveal the advantages of two degrees of freedom PID algorithm 
to the classical PID control. 
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1. INTRODUCTION 
 
The proportional-integral-derivative (PID) controller is the most common industrial control algorithm 
(Åström and Hägglund, 1995). Modified forms of PID control have been proposed to overcome the 
limitations of PID controllers. Two degrees of freedom (2DOF) PID control algorithm is a control 
method which, in addition to the omission of an abrupt change in the control force, eliminates the 
steady state response owing to the input slope and acceleration. Furthermore, employing this control 
method, the response of the system to unit step disturbance has such a low amplitude that approaches 
to zero (Ogata, 1997). 
 
Tuned mass damper (TMD) is one of the most simple and practical vibration reduction devices. The 
modern concept of TMDs for structural applications can trace its roots in dynamic vibration absorber 
invented by Frahm (1909). The objective of incorporating a TMD into a structure is to reduce energy 
dissipation demand on the primary structural members under the action of external forces. This 
reduction is accomplished by transferring some of the structural vibrational energy to the TMD and 
dissipating the energy at the damper of the TMD (Soong and Dargush, 1997). The detailed theory and 
working principles of undamped and damped TMD to control the displacement of an undamped single 
degree of freedom system subjected to a harmonic force have been described by Den Hartog (1956). 
Active tuned mass dampers (ATMD) were introduced by inclusion of an active control mechanism to 
the TMD to improve its effectiveness (Chang and Soong, 1980). 
 
In this paper, the effectiveness of classical PID control and 2DOF PID for active vibration control of a 
structure is investigated. An ATMD is used as the active control device and is fitted to the roof of the 
structure. The results for uncontrolled structure and structure fitted with passive and active TMD are 
obtained and comparisons are made in terms of defined evaluation criteria. The paper ends with a 
discussion. 
 
 
 
 



 

2. EQUATIONS OF MOTION 
 
2.1. Equations of motion of uncontrolled structure 
 
The equation of motion for an n DOFs structure subjected to base excitation can be written as 
 

( ) ( ) ( ) ( )gt t t x t+ + = −MX CX KX Mr&& & &&  (2.1) 
 
where M , C  and K  are mass, damping and stiffness matrices, respectively; ( )tX  is an n -

dimentional displacement vector; ( )gx t&&  is the ground acceleration;r is an n -dimentional unit vector 
and the dot indicates a derivative with respect to time. 
 
From specified damping ratios nξ  for l  modes ( )1,2, ,n l= K , the damping matrix, C , is expressed 
as (Chopra, 2007) 
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where nω  is the n th mode natural frequency; nφ  is the n th mode shape and T

n n nM = Mφ φ . 
 
2.2. Equations of motion of structure fitted with ATMD 
 
It is assumed that an ATMD whose mass, damping and stiffness are denoted by Tm , Tc  and Tk , 
respectively, is connected to the i th DOF of the structure. The structure with the attached ATMD can 
be treated as an 1n+ DOF structure and its equations of motion can be written as 
 

( ) ( ) ( ) ( ) ( )gt t t x t u t+ + = − +MX CX KX Mr p&& & &&  (2.3) 
 
where p is an 1n+ - dimentional allocation vector of the control force whose i th component is -1 and 

1n+ th component is 1 and the other components are 0; ( )u t  is the control force; Tx is the relative 

displacement of the ATMD with respect to the i th DOF of the structure; ( ) ( ) ( ){ },
T

Tt t x t=X X is an 

1n+ -dimentional displacement vector; r is an 1n+ -dimentional vector whose ( )1n + th component 

(ATMD location) is 0 and the other components are 1 and M , C  and K are ( ) ( )1 1n n+ × +  mass, 
damping and stiffness matrices of the structure fitted with the TMD, given, respectively, by: 
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Letting ( ) ( ) ( )gt x t u t= − +f Mr p&& , Eqn. 2.3 can be expressed in state-space as (Åström and 
Hägglund, 1995, Soong, 1990) 
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3. ACTIVE CONTROL STRATEGY 
 
3.1. Classical PID control system 
 
PID control is the must common industrial control algorithm. The PID algorithm has the following 
form (Åström and Hägglund, 1995) 
 

( ) ( ) ( ) ( )
0

t

p i d

de t
u t K e t K e t dt K

dt
= + +∫       (3.1) 

 
where ( )u t  is the controller input; ( )e t  is the control error which is the difference between desired 

response and actual response and pK , iK  and dK  are the PID control parameters. The control 
variable is thus a sum of three parts (Figure 3.1).  
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This system is a simple model of an experimental three-story frame in Structural Dynamics and 
Control/Earthquake Engineering Laboratory (SDC/EEL) in the University of Notre Dame (Shakib, 
2010). 
 
In this paper, four ground motion records (two near field and two far field) are selected: El Centro 
1940, Hachinohe 1968, Northridge 1994 and Kobe 1995. 
 
 
5. CONTROL EFFECTIVENESS 
 
To evaluate the control system performance the following eight evaluation criteria are considered 
(Table 5.1). In naming these criteria, �  represents the absolute value and �  denotes the RMS 
response. 
 
Table 5.1. Evaluation criteria 
Index Description 
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In Table 5.1, ( )c
ix t  and ( )c

ix t&&  are time histories of the displacement and acceleration of the i th story (

1,2,3i = ) of the controlled system, respectively; ( )u
ix t  and ( )u

ix t&&  are time histories of the 

displacement and acceleration of the i th story ( 1,2,3i = ) of the uncontrolled system, respectively;

( )cF t  is the time history of control force; totW  is the total weight of the structure; ( )F t  is the 

excitation force and ( )c
id t and ( )u

id t  are time histories of the drift of the i th story ( 1,2,3i = ) of the 
controlled and uncontrolled system, respectively. 
 
5.1. Simulation results 
 
The system’s responses are obtained through numerical integration of the equation of motion in three 
cases: system fitted with passive TMD, system fitted with ATMD and classical PID control strategy is 
used, system fitted with ATMD and 2DOF PID control strategy is used. 
 
It has been assumed that the mass ratio of TMD is 1% and the controller operates with a time delay of 
0.02 sec. To obtain the frequency and damping ratios of ATMD, instead of using the empirical 
formulas available to the literature (Ioi and Ikeda, 1978) a sensitivity analysis is performed using white 
noise excitation. 
 
For example, the displacement and acceleration response for the 3rd story for both uncontrolled and 
controlled structure with 2DOF PID control strategy subjected to Kobe earthquake are shown in 
Figures 5.1 and 5.2. Table 5.2 shows the values of evaluation criteria for different control strategies. 
The results show that ATMD is more effective than the passive TMD in reducing the system’s 
responses. Moreover, 2DOF PID control shows better performance compared to classical PID control. 
 
Table 5.2. Evaluation criteria 

Excitation Control strategy Evaluation criteria (percent) 
  

1J  2J  3J  4J  5J  6J  7J  8J  
El Centro Passive 78.0 51.4 81.5 47.8 0.0 0.0 0.0 77.4 

Active PID control 6.0 3.4 9.6 2.0 28.5 9.5 73.8 21.0 
Active 2DOF PID control 2.0 1.1 6.1 2.6 31.6 11.0 85.9 22.4 

Kobe Passive 60.4 50.0 43.2 34.0 0.0 0.0 0.0 63.3 
Active PID control 7.9 6.3 6.5 1.7 51.3 8.1 65.0 20.7 
Active 2DOF PID control 2.0 1.6 2.7 1.8 57.2 9.3 74.2 15.9 

Northridge Passive 57.5 33.7 59.4 32.8 0.0 0.0 0.0 57.6 
Active PID control 2.2 1.7 1.6 0.7 88.8 10.1 70.8 9.5 
Active 2DOF PID control 1.0 0.5 1.8 0.9 94.9 11.3 78.9 10.1 

Hachinohe Passive 79.2 48.6 66.4 40.6 0.0 0.0 0.0 79.2 
Active PID control 5.2 4.0 14.7 1.4 16.9 12.1 68.9 17.3 
Active 2DOF PID control 1.9 1.2 2.9 1.5 19.0 13.3 75.6 16.5 

 
 



 

 
Figure 5.1. Control effectiveness on displacement response of the 3rd story subjected to Kobe earthquake. 

 

 
Figure 5.2. Control effectiveness on acceleration response of the 3rd story subjected to Kobe earthquake. 

 
 
6. CONCLUSIONS 
 
The effectiveness of classical PID and 2DOF PID control algorithms for active vibration control of a 
structure is investigated. A three story structures is considered as an example. It was shows that 2DOF 
PID exhibits more effectiveness in reducing system’s response composed to classical PID control 
algorithm. 
 
Although active control strategies demonstrate very high effectiveness, it should be noted that the 
values of active control force maybe so high that its realization be non-economic. However, by the 
compromise between response levels and active control force values, the desired results can be 
achieved. 
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