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SUMMARY:

Two degrees of freedom PID control algorithm consists of two PID systems that have different signal errors. The
input signal error can be the output response, expected response or difference between them. In this article,
single degree of freedom PID control and two degrees of freedom PID control are used as control algorithms. An
active tuned mass damper is used for the reduction of vibration of a single degree of freedom system subjected to
base excitation. Simulations are performed in MATLAB environment and the results for these two methods
obtained and compared to each other. The results reveal the advantages of two degrees of freedom PID algorithm
to the classical PID control.
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1. INTRODUCTION

The proportional-integral-derivative (PID) controller is the most common industrial control algorithm
(Astrém and Hagglund, 1995). Modified forms of PID control have been proposed to overcome the
limitations of PID controllers. Two degrees of freedom (2DOF) PID control algorithm is a control
method which, in addition to the omission of an abrupt change in the control force, eliminates the
steady state response owing to the input slope and acceleration. Furthermore, employing this control
method, the response of the system to unit step disturbance has such a low amplitude that approaches
to zero (Ogata, 1997).

Tuned mass damper (TMD) is one of the most simple and practical vibration reduction devices. The
modern concept of TMDs for structural applications can trace its roots in dynamic vibration absorber
invented by Frahm (1909). The objective of incorporating a TMD into a structure is to reduce energy
dissipation demand on the primary structural members under the action of external forces. This
reduction is accomplished by transferring some of the structural vibrational energy to the TMD and
dissipating the energy at the damper of the TMD (Soong and Dargush, 1997). The detailed theory and
working principles of undamped and damped TMD to control the displacement of an undamped single
degree of freedom system subjected to a harmonic force have been described by Den Hartog (1956).
Active tuned mass dampers (ATMD) were introduced by inclusion of an active control mechanism to
the TMD to improve its effectiveness (Chang and Soong, 1980).

In this paper, the effectiveness of classical PID control and 2DOF PID for active vibration control of a
structure is investigated. An ATMD is used as the active control device and is fitted to the roof of the
structure. The results for uncontrolled structure and structure fitted with passive and active TMD are
obtained and comparisons are made in terms of defined evaluation criteria. The paper ends with a
discussion.



2. EQUATIONS OF MOTION
2.1. Equations of motion of uncontrolled structure

The equation of motion for an n DOFs structure subjected to base excitation can be written as

MX (t)+CX(t)+KX(t)=-Mrx, (t) (2.1)
whereM, C and K are mass, damping and stiffness matrices, respectively; X(t) is an n-

dimentional displacement vector; X'g (t) is the ground acceleration; r is an n -dimentional unit vector
and the dot indicates a derivative with respect to time.

From specified damping ratios &, for | modes (n :1,2,...,I), the damping matrix, C, is expressed
as (Chopra, 2007)
L2
C=M(Z%¢ndﬂ jM @2)
n=1 n

where @, is the n th mode natural frequency; ¢, is the n th mode shape and M, = ¢, M@, .

2.2. Equations of motion of structure fitted with ATMD

It is assumed that an ATMD whose mass, damping and stiffness are denoted by m.,c; and kT,

respectively, is connected to theith DOF of the structure. The structure with the attached ATMD can
be treated as an N +1DOF structure and its equations of motion can be written as

MX (t)+CX(t)+ KX (t) = -MT%, (t)+pu(t) (2.3)

where pis an n+1- dimentional allocation vector of the control force whoseith component is -1 and
n-+1th component is 1 and the other components are 0; u(t) is the control force; X; is the relative
. S T.
displacement of the ATMD with respect to the i th DOF of the structure; X(t) = {X(t), X, (t)} is an
n+1-dimentional displacement vector; T is an n+1-dimentional vector whose(n +1) th component

(ATMD location) is 0 and the other components are 1 and M, C and K are (n +1)x(n+1) mass,
damping and stiffness matrices of the structure fitted with the TMD, given, respectively, by:
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Letting f(t)=—MTX (t)+pu(t), Eqn. 2.3 can be expressed in state-space as (Astrém and
Hégglund, 1995, Soong, 1990)

Z = AZ + Bf @.7)

where
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3. ACTIVE CONTROL STRATEGY
3.1. Classical PID control system

PID control is the must common industrial control algorithm. The PID algorithm has the following
form (Astrém and Hagglund, 1995)

de(t) (3.1)

u(t)=K,e(t)+K [ e(t)dt+K,
where u(t) is the controller input; e(t) is the control error which is the difference between desired

response and actual response and Kp, K, and K, are the PID control parameters. The control
variable is thus a sum of three parts (Figure 3.1).
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Figure 3.1. Block diagram of (a) Controlled structure, (b) PID control (Ogata, 1997).

1. P-term which is proportional to the error.
2. I-term which is proportional to the integral of the error.

3. D-term which is proportional to the derivative of the error.

Correlations between the three parameters may not be exactly accurate, because Kp, K, and K, are

dependent on each other. In fact, changing one of these variables can change the effect of the other
two (Astrém and Hagglund, 1995).

3.2. 2DOF PID control system

A general form of 2DOF PID control system is demonstrated in Figure 3.2. The system has the
reference input R(s), disturbance input D(s) and noise input N(s). G, (s) and G, (s) are the

transfer functions of the PID controllers and Gp (s) is the transfer function of the system.

For this system, three closed-loop transfer functions, i.e., G
1997).

G,y and G, may be derived (Ogata,

yr? yn?
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Figure 3.2. Control strategy with 2DOF PID (Ogata, 1997).

In this case, if Gyd is given, then Gyn is fixed, but Gyr is not fixed, because GCl is independent of

G,4 - Thus, two closed-loop transfer functions among three closed-loop transfer function G, G,

and G, are independent. Hence, this system is a 2DOF control system.

3.3. Control design

Because often the parameters of PID controllers will be set in place, different tuning rules has been
proposed in the literatures for this purpose. Automatic tuning methods have been developed as well.

In this paper, to adjust the PID parameters, genetic algorithm constrained optimization method is
employed. Accordingly, the system response to unit step excitation must satisfy some strict conditions.
Herein, the rise time of less than 0.05 sec, overshoot less than 10%, and the settling time of less than 1
sec is selected.

4. EXAMPLE

A 3-story frame with the following mass, damping and stiffness matrices is assumed:
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This system is a simple model of an experimental three-story frame in Structural Dynamics and
Control/Earthquake Engineering Laboratory (SDC/EEL) in the University of Notre Dame (Shakib,

2010).

In this paper, four ground motion records (two near field and two far field) are selected: El Centro
1940, Hachinohe 1968, Northridge 1994 and Kobe 1995.

5. CONTROL EFFECTIVENESS

To evaluate the control system performance the following eight evaluation criteria are considered
(Table 5.1). In naming these criteria,[| represents the absolute value and|[[ denotes the RMS

response.

Table 5.1. Evaluation criteria

Index Description
) max, Xic (t )‘ Normalized peak floor displacement
" max, [x! (t)‘
Xic (t)H Normalized RMS floor displacement
© )
) max, ch (t)‘ Normalized peak floor acceleration
" max,|x (t)‘
ch (t) Normalized RMS floor acceleration
R0
max, Fe (t) Normalized peak control force
J. = (W, =2892N)
Wtot
max, |F° (t) Normalized peak control force
Y= max, |F (t)|
; H = (t)‘ Normalized RMS control force
O
) max, dic (t)‘ Normalized peak floor drift
® max,|d! (t)‘




In Table 5.1, % (t) and X’ (t) are time histories of the displacement and acceleration of thei th story (

i=1,2,3) of the controlled system, respectively; x'(t) and ¥'(t) are time histories of the

displacement and acceleration of the ith story (i=1,2,3) of the uncontrolled system, respectively;

= (t) is the time history of control force; W, is the total weight of the structure; F (t) is the

tot

excitation force and d; (t)andd;' (t) are time histories of the drift of the i th story (i=1,2,3) of the
controlled and uncontrolled system, respectively.

5.1. Simulation results

The system’s responses are obtained through numerical integration of the equation of motion in three
cases: system fitted with passive TMD, system fitted with ATMD and classical PID control strategy is
used, system fitted with ATMD and 2DOF PID control strategy is used.

It has been assumed that the mass ratio of TMD is 1% and the controller operates with a time delay of
0.02 sec. To obtain the frequency and damping ratios of ATMD, instead of using the empirical
formulas available to the literature (loi and Ikeda, 1978) a sensitivity analysis is performed using white
noise excitation.

For example, the displacement and acceleration response for the 3™ story for both uncontrolled and
controlled structure with 2DOF PID control strategy subjected to Kobe earthquake are shown in
Figures 5.1 and 5.2. Table 5.2 shows the values of evaluation criteria for different control strategies.
The results show that ATMD is more effective than the passive TMD in reducing the system’s
responses. Moreover, 2DOF PID control shows better performance compared to classical PID control.

Table 5.2. Evaluation criteria

Excitation | Control strategy Evaluation criteria (percent)
J; J, N J, Je Js J, Jg
El Centro | Passive 780 |51.4 |81l5 |478 |0.0 0.0 0.0 77.4
Active PID control 6.0 3.4 9.6 2.0 285 |95 73.8 | 21.0
Active 2DOF PID control | 2.0 1.1 6.1 2.6 316 | 11.0 |859 |224
Kobe Passive 60.4 |50.0 |432 |340 |00 0.0 0.0 63.3
Active PID control 7.9 6.3 6.5 1.7 51.3 | 8.1 65.0 | 20.7
Active 2DOF PID control | 2.0 1.6 2.7 1.8 57.2 | 9.3 742 | 15.9
Northridge | Passive 575 337 |594 |328 |00 0.0 0.0 57.6
Active PID control 2.2 1.7 1.6 0.7 88.8 | 10.1 |70.8 |95
Active 2DOF PID control | 1.0 0.5 1.8 0.9 949 | 11.3 | 789 | 10.1
Hachinohe | Passive 79.2 | 48,6 |66.4 |406 |00 0.0 0.0 79.2
Active PID control 5.2 4.0 147 |14 169 |121 |689 |17.3
Active 2DOF PID control | 1.9 1.2 2.9 15 19.0 | 133 | 756 | 16.5




0.02r

Lncontrol led
0.015 | — Active Control
—~ 001
g
Ry
2 0.005
D
E | SRR L e L
51
g
% -0.0051
1)
-0.01F
-0.015
-0.02 I I 1 I I | | I 1 |
B 5 10 15 20 25 30 35 40 45 50

Time (s)

Figure 5.1. Control effectiveness on displacement response of the 3" story subjected to Kobe earthquake.
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Figure 5.2. Control effectiveness on acceleration response of the 3 story subjected to Kobe earthquake.

6. CONCLUSIONS

The effectiveness of classical PID and 2DOF PID control algorithms for active vibration control of a
structure is investigated. A three story structures is considered as an example. It was shows that 2DOF
PID exhibits more effectiveness in reducing system’s response composed to classical PID control
algorithm.

Although active control strategies demonstrate very high effectiveness, it should be noted that the
values of active control force maybe so high that its realization be non-economic. However, by the
compromise between response levels and active control force values, the desired results can be
achieved.
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