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SUMMARY: 
It is now apparent that our nation’s infrastructures and essential utilities have been optimized for reliability in 

benign operating environments. As such, they are susceptible to cascading failures induced by relatively minor 

events such weather phenomena, accidental damage to system components, and major events such earthquakes. 

This paper presents a new kind of integrated modeling method for simulating the reliability of critical 

infrastructure spatially lifelines for a hazard and the subsequent interdependencies among the interconnected 

infrastructures. In previous studies, usually the weight of network components is not defined or in some case is 

assigned by expert idea or complicated network analysis. The new Weighed Stochastic Petri Net (WSPN) 

modeling approach which is proposed in this paper is based on the graph theory, fragility curves, Stochastic Petri 

net (SPN) modeling and Markov Chain analysis. In this model by using the simple graph theory parameters, 

weight of each component is defined in stochastic Petri nets. Therefore the cascading impacts throughout the 

network and reliability can be assessed based on weighed stochastic Petri nets. 

 

Keywords: infrastructure, reliability, stochastic Petri Net, graph theory, Markov Chain analysis  

 

 

1. INTRODUCTION 
 

Elements of infrastructure, which include electric power, natural gas and petroleum production and 

distribution, telecommunications (information and communications), transportation, education, water 

supply, banking and finance, emergency and government services, agriculture, and other fundamental 

systems and services, are highly interconnected and mutually dependent in complex ways, both 

physically and through a host of information and communications technologies (Rinaldi et al., 2001). 

 

Understanding and analyzing infrastructure performance and interdependencies is essential for the 

effective response and management of resources for rescue, recovery, and restoration. Currently, there 

are two main ways of representing relationships between infrastructure elements: graphic and matrix 

representations (Dunn et.al, 2004). Graphic representation of infrastructure components interaction is 

often intuitive and easy to understand while matrix representation is more organized and can be further 

extended to quantitative analysis and modeling.  

 

Unlike graphic and matrix representations, the simulation of a cascading process is a technique that 

dynamically represents relationships between infrastructure elements. The technique allows the 

coupling of multiple interdependent infrastructure elements to address infrastructure protection, 

mitigation, response, and recovery issues. 

 

In this study, it is tried to obtain the weight of the network elements by using the graph theory and 

calculate the geographical network parameters. Then Weighed Stochastic Petri Net modeling is done 

by using the weighted network elements, fragility curves, Stochastic Petri net theory and Markov 

Chain analysis. 

 

 

 



2. STOCHASTIC PETRI NET THEORY 
 

Standard models used for reliability analysis are Reliability Block Diagrams, Fault Trees, Markov 

Chains, and Petri Nets. Since the first three are not capable of modeling discrete events caused by 

trigger events, e.g. cascading effects, it is addressed modeling infrastructure performance using Petri 

Nets. Petri Nets is suitable to formalize and simulate dynamic aspects of complex systems, describing 

the semantics and activity of workflow systems. 

 

Petri net had been applied to study the behavior of concurrent, asynchronous, distributed, parallel, non 

deterministic, and/or stochastic systems (Murata, 1989). A basic Petri net structure C can be described 

as a seven-tuple, C = (P, T, I, O, A, w, B), where, P stands for place, T for transition, I for input 

function, O for output function, A for arc connecting P–T, w for arc weight expressing the number of 

arcs, and, B for inhibitory place. The existence of the characteristic of a place is indicated by the 

presence of token.  

 

One important structural property of the basic Petri net enables the determination of the place invariant 

by the incidence matrix, C. A place invariant is the set of places in which the weighted sum of the 

tokens remain constant for all markings (Murata, 1989). It was shown that the minimal place 

invariants of a Petri net are capable of representing the interdependencies among the interconnected 

infrastructures (Gursesli et.al, 2003). The incidence matrix has the dimension nm×  if the numbers of 

places and transitions are m and n, respectively. If the place invariant y is a 1m × column vector, then, 

solution of y is given by the Eqn. 2.1. 

 

0=∗ yC
T

          (2.1) 

 

where, T
C is the transpose matrix of C. 

 

Transition expressing the occurrence of an event is characterized by instantaneous time in basic Petri 

net model whereas it is more realistic for such problems to be characterized by stochastic time 

distribution which can be addressed by applying a SPN model (Bobbio, 1990). The SPN model states 

that, in a timed Petri net, each transition takes a positive time to fire (occurrence of an event) and the 

firing time is an exponential random variable. This paper adapts the related theory of SPN analysis 

from Zuberek (1991). SPN analysis is performed to depict the reachability graph which indicates all 

the possible markings for a specific initial marking condition. The resulting reachability graph from 

this analysis can be used to generate the corresponding Markov Chain, analysis of which simulates the 

steady state of the Petri net. 

 

Generalized Stochastic Petri Nets (GSPN) differ from regular Petri Nets in that two types or 

transitions exist, i.e. immediate transitions and timed transitions, (Krings, 2003). As an extension to 

Petri Nets, arc multiplicity is a convenient way to represent the case when more than one token is to be 

created or absorbed. The multiplicity is denoted next to the arc. When a transition fires, a token is 

consumed for each arc incident to the transition and a new token is created for each arc incident from 

the transition. It should be noted that tokens are not moved, but they are consumed and created, 

thereby not necessarily keeping the number of tokens in a net constant. 

 

 

 

           
 

 

 

 

 

 

Figure 2.1. Simple Generalized Stochastic Petri Nets, (a) single-mode Model, (b) Multi-mode Model 
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Now, it is defined GSPN primitives useful in modeling common mode faults and cascading effects. 

The GSPN shown in Fig. 2.1.a models a simple system and is the simplest of the proposed GSPN 

modeling primitives. Places the safe-mode and failure-mode represent the state of the infrastructure 

which is initially functional, as indicated by the token in place safe-mode. The infrastructure is failing 

with fail rate tλ in a single mode fault model. Petri nets are useful in determining the reliability R(t) of 

a system, where R(t) is defined as the probability that the system is functioning during the entire time 

interval [0,t], given it was functioning at t=0. The simple system of Fig. 2.1.a produces ( ) tetR λ−= . 

 

Introducing common mode failure models partitions the fail rates, resulting in rates for faults obeying 

the independence of faults assumption, and those that do not. Partitioning the fail rate in the simple 

model of Fig. 2.1.a results in the GSPN primitive is shown in Fig. 2.1.b. The aggregate fail rate is 

given by hzdind λλλ += , where the subscripts indicate the fail rates contributable to independent and 

common model faults respectively. Thus indλ is the fail rate for components obeying the independence 

of fault assumption. 

 

 

 

 

 

 

 

 
 

Figure 2.2. Common Mode Generalized Stochastic Petri Nets 

 

The multi-mode GSPN primitive can be used to derive a common mode failure GSPN primitive as 

shown in Fig. 2.2 for a two system scenario. The common mode fault affecting both systems is 

modeled by the subnet in the centre, consisting of place com and its associated timed transition with 

fail rate hzdλ . Whereas each system may fail independently as the result of the firing of their timed 

transition with rate indλ , both systems fail if the centre transition fires. Note that the fail rate of the 

centre transition does not depend on the markings of places sys-i-up and sys-j-up. That is, the 

transition does not fire twice as fast since it represents the common mode failure of two systems. The 

reason is that by the definition of common mode failure hzdλ  implies that both systems are subjected 

to the same input. 

 

In the GSPN primitives above it is differentiated between independent failures and common mode 

failures. In real systems, the separation of independent and dependent failures can be extended to 

smaller granularities. Rather than having simply an independent and common mode portion of the 

system, each set of reused components represent a potential source for common mode failure for the 

systems having those components. Each set can be modeled by a timed transition having its respective 

fail rate. Not only allow a more accurate model, but also allows sets of reused components to span 

over subsets of systems. 

 

 

3. GRAPH THEORY 

 

Every networked system exhibits a distinct topology or physical layout. Concepts from modern graph 

theory are fundamental to enable measuring of these observable differences in network topology and 

flow type. A graph or network is a pair ( )EVG ,= of sets. The elements of V are the vertices (nodes) 

of the graph G , whereas the elements of E are its edges (links). The graph components can have 

different properties within the network in terms of their function, ability to connect with others, 

preferential attachment and importance (Diestel, 2000). They also have different probabilities of 

failure given natural and man-made hazards. Using graph theory, several parameters such as vertex 
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degree, clustering coefficient, connectivity and redundancy ratio can be calculated to characterize the 

network topology and assign weight to the network components as a component importance factor. 

 

 

4. WEIGHTED STOCHASTIC PETRI NET 

 

As described in previous section, the critical infrastructure systems can be represented as nodes in a 

network where they are connected through a set of links representing the logical relationships among 

them. In this network system, failure of one node affects the functioning of the interconnected nodes. 

By using graph theory concept in stochastic Petri nets, the cascading impacts throughout the network 

and reliability can be assessed. 

 

4.1. Modeling Framework 
 

The reliability of a component requires the determination of its resistance capacity. Considering 

various uncertainties and the random factors involved, the capacity should be described based on a 

probabilistic model. The uncertainties stem from the uncertainties in the material properties, 

dimensions and the models used for the evaluation of the capacity. In this study, a set of fragility 

curves will be developed for the infrastructure components using the seismic structural modeling 

associated with Monte Carlo simulation to convey the information about the vulnerability of 

infrastructure components for different seismic intensities. Considering the most probable hazard 

condition as a common mode fault, the cascading impacts on the interconnected infrastructures can be 

captured through the development and analysis of a network based model, such as graph theory and 

SPN; further analysis of the corresponding Markov Chain simulates long term probability of the 

infrastructure failure. 

 

4.2. Fragility Curves 

 

Fragility curve is defined as a mathematical expression that represents the conditional probability of 

reaching or exceeding a certain damage state of an infrastructure at a given hazard level. Fragility 

curves can be developed empirically with damage database and analytically with structural failure 

modeling. The steps of the analysis include; classifying the damage states of the infrastructure 

components, e.g., critical strain, stress, drifts, seismic structural modeling of the components with the 

Monte Carlo simulation of the uncertain design parameters for a certain value of seismic intensity, 

calculate the exceeding probabilities of the damage states, repeat the same analysis for different 

seismic intensities, develop the analytical fragility curves. 

 

4.3. Transition Probability and Markov Chain 
 

For SPN analysis, if state js is directly kt reachable from state is , the transition probability is given 

by Eqn. 4.1. 
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where, ar = firing rate function which assigns firing rate ( )tr  to each transition t ; an = firing rank 

function indicating the number of active firings for each transition (Sultana, 2009). The transition 

probability matrix is used to generate the corresponding Markov Chain. Theory of Markov Chain can 

be found elsewhere (Kemeny et al., 1974); therefore, only a brief description is given here. Markov 

Chain is developed with a transition probability matrix, rT with probability entries, summing up to 1.0. 

It represents a sequence of probability vectors npppp ,...,,, 210 and, it can be written by Eqn. 4.2. 
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n
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where, p is called a steady state vector if the state vectors np get closer and closer to p as n increases. 

The entries of p are the long term probabilities of the Markov Chain states. 

In summary, the fragility curves of the infrastructure components is shown the probability matrix of its 

various hazard conditions, the seismic frequency analysis is predicted the seismic probability; the 

graph model of the network is simulated to obtain the importance factor of the components which is 

used in transition matrix generation. Then SPN model will simulate the cascading impacts for 

infrastructure disruption and the corresponding Markov Chain analysis will show the long term failure 

trend of the vulnerable infrastructures. 

 

 

5. CASE STUDY 
 

As a case study, a simple lifeline system is assumed with 9 nodes and 10 links, Fig. 5.1. The failure 

probability of the components is illustrated in Table. 5.1. Also the result of the proposed WSPN model 

for the network, spatially the graph theory parameters and performance oriented reliability of the 

components, is gathered in Table 5.1. 

 

 
 

Figure 5.1. The simple network system with 9 nodes and 10 links 
 

 
Table 5.1. Network Characterization 

Node Degree Mean Clustering Redundancy Efficiency Reliability 

1 1 1.44 0.000 0.250 0.857 1.00 

2 2 1.05 0.000 0.250 0.832 0.74 

3 3 0.83 0.333 0.265 0.906 0.61 

4 4 0.71 0.166 0.224 0.966 0.54 

5 1 1.10 0.000 0.187 0.865 0.23 

6 1 1.30 0.000 0.222 0.805 0.17 

7 2 0.75 0.000 0.194 0.905 0.39 

8 2 0.86 0.000 0.200 0.871 0.45 

9 3 0.96 0.333 0.333 0.867 0.52 

 

 

6. CONCLUSION  
 

In this paper, it is presented a simple WSPN modeling for identifying and quantifying performance of 

lifeline systems. In this model, the fragility curves of the infrastructure components is presented the 

probability matrix of its various hazard conditions and the seismic frequency analysis is predicted the 

seismic probability; the graph model of the network is simulated to obtain the importance factor of the 

components which is used in transition matrix generation. Then SPN model will simulate the 

cascading impacts for infrastructure disruption. Analysis of the Markov Chain generated from the 

reachability graph rendered the probability matrix of the steady state or long term condition of the 
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network infrastructures. The extended analysis of the developed Markov Chain tracked the extended 

Petri net analysis accurately. Integration of these modeling techniques provides a useful and 

significant tool for predicting the overall probability matrix of infrastructure damage states. 

 

 
AKCNOWLEDGEMENT 

The research reported herein was conducted under the sponsorship of the Kyoto University. 

 

 

REFERENCES  

 

Alexoudi, M., Hatzigogos, T. and Pitilakis, K. (2005). Earthquake Risk Assessment of Gas System. Proceedings 

of 9th International Conference on Structural Safety and Reliability. Vol I: S2-17-S2-25. 

Bobbio, A. (1990). System modeling with Petri nets. System Reliability Assessment. Kluwer P.C. Vol I:102–143. 

Diestel, R. (2000). Graph Theory. Springer, Newyork, 312 

Dunn, M. and Wigert, I. (2004). An inventory and analysis of protection policies in fourteen countries. (2004). 

International CIIP Handbook. Swiss Federal Institute of Technology, Zurich, 243  

Gursesli, O. and Desrochers, A.A. (2003). Modeling infrastructure interdependencies using Petri nets. IEEE 

International Conference of Systems, Man Cyber. Vol II: 1506-1512 

Kemeny, J.C., Shell, J.L. and Thompson, G.L. (1974). Introduction to finite mathematics, Third edition. 

Prentice-Hall, Englewood Cliffs, New Jersey. 

Krings, A. and Oman, P. (2003). A simple GSPN for modeling common mode failures in critical infrastructures. 

36th Hawaii Intertational Conference on System Science. Vol I: 334-344. 

Murata, T. (1989). Petri nets: properties, analysis and applications. IEEE. 77:4, 541-580 

Rinaldi, S., Peerenboom, J. and Kelly, T. (2001). Identifying, understanding, and analyzing critical infrastructure 

interdependencies. Control Systems Magazine. 21:6, 11–25. 

Sultana, S. and Chen, Z. (2009). Modeling flood induced interdependencies among hydroelectricity generating 

infrastructures. Journal of Environmental Management. 90:1, 3272-3282. 

Zuberek, W.M. (1991). Timed Petri nets. Microelectron. Reliabil. 31:4, 627-644 

 


