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SUMMARY: 

A boundary method to analyze the dynamic soil-shaft interaction considering the flexibility of the structure and 

the translation-rotation of its base is presented. The model consists in a floating flexible cylinder embedded in a 

soil deposit with rigid base, forming two regions: one interior including the shaft and the supporting soil and 

another exterior including the surrounding soil. For each region, displacements and forces are expressed by 

means of superposition of wave modes traveling horizontally. Boundary conditions in the interface between the 

two regions given by the compatibility of displacements and forces are imposed at nodal points. Vertical 

incidence of shear waves is considered as excitation of the system. In both regions, wave modes are computed 

with the finite layer method, in such a way that the solution is discreet in the vertical direction and continuous in 

the horizontal one. The application and accuracy of this method is illustrated with some examples reported in the 

specialized literature. 
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1. INTRODUCTION 
 

Seismic effects in underground structures are often evaluated with different approaches to the ones 
employed for surface structures. In general, for underground structures design actions are expressed in 

terms of displacements and deformations imposed in the structure by the soil as a result of the 

interaction between them. The simplest design approach is the one ignoring the interaction of the 
underground structure with the surrounding soil. According to this approach, first the free field ground 

deformations are estimated, and then the structure is designed to be adjusted to these deformations. 

The result is reasonable when the soil is much more rigid than the structure. On the contrary, it is 

necessary to consider dynamic interaction effects, since they can affect the surrounding deformations 

considerably. These effects are due to the wave diffraction produced by the structure (kinematic 

interaction), as well as to the inertial forces generated by the vibration of the system (inertial 

interaction). 

 

During earthquakes, shafts are subjected to significant curvatures imposed by the lateral ground 
motion. Such curvatures generate important bending moments. Solutions reported in the literature are 

scarce and limited. The approximated solution of Veletsos y Younan (1994; 1995) is remarkable 

because of its simplicity and attractiveness. It is based on the hypothesis of null vertical (normal) 

stresses. This idealization of the soil was proposed by Arias et al (1981) to compute dynamic pressures 

in retaining walls. The solution of Veletsos and Younang is superior to the one of Tajimi (1969) based 

on the hypothesis of null vertical displacements. Both solutions, however, are applicable to rigid 

structures with fixed base. For these conditions, the resulting soil actions are excessively great with 

respect to the ones corresponding to floating flexible shafts. The flexibility of the structure and the 

translation-rotation of its base produce a remarkable reduction of these actions. This effect has been 

studied by Nicolau et al (2001) in piles of great dimensions by using an approximated model of a 
beam on a Winkler elastic foundation.     



A boundary method for seismic analysis of soil-shaft systems, regarding the flexibility of the walls and 
the floating of the bottom, is described in what follows. The model consists in an elastic cylinder 

embedded in a soil deposit with rigid base forming two regions: one interior with the shaft and the 

supporting soil, and the other exterior with the surrounding soil. For each region, the displacements 
and forces are expressed by means of a superposition of wave modes with horizontal propagation. 

Then, boundary conditions are imposed in the interface between both regions, given by compatibility 

of displacements and forces. Vertical incidence of shear waves is considered as excitation. Thin layer 

method is used to compute wave modes in both regions, in such a way that the solution is discrete in 

the vertical direction and continuous in the horizontal one. 

 
 

2. FORMULATION OF THE PROBLEM 

 

2.1. Equations of motion 

 

Soil-shaft system is composed by a shaft of radius or  embedded in a horizontally layered soil deposit. 

Each layer has thickness jh , shear wave velocity jjj G ρ=β  , being jG  the shear modulus and jρ  

the mass density, damping jζ  and Poisson ratio jυ . Let be u, v and w the radial, tangential and axial 

displacements, respectively, in cylindrical coordinates z)θ,(r,  where vertical coordinate grows with 

depth. If the soil deposit is divided in N layers, the differential equations that govern the harmonic 
motion in the 1 <  j < N layer are  
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where ω  is the frequency of excitation, jυ  is the Poisson ratio and jjj G ρ=β  is the shear wave 

velocity, being jG  the shear modulus and jρ  the mass density; 2∇  and ε  are the Laplacian and the 

expansion (dilatación), respectively, defined as 
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Let be )21(G2 jjjj υ−υ=λ  the constant of Lamé. Stress components over a cylindrical surface are 

related with displacement components by means of: 
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2.2. Azimuthal decomposition 

 

Axial symmetry of the structure allows carrying out an azimuthal decomposition of the solution. 

According to Kausel and Roësset (1975 and 1977), modal displacements (radial, vertical and 
tangential) can be obtained by separation of variables as is indicated. 

 

Rayleigh generalized modes in plane deformation 
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Love generalized modes in antiplane shear 
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where k  is the horizontal wave number and n  is the azimuthal wave number; )(Cn ξ  is a solution of 

the Bessel equation of n-order, given by 
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The time harmonic factor tie ω  has been omitted by simplicity. For symmetrical modes with respect to 

plane =θ 0, u and w  are combined with θncos  and v  with θ− n sin . On the contrary, u  and w  are 

combined with θn sin  and v  with θncos  for antisymetrical modes. Replacing Eqns 2.7-2.12 in stress 

components given in Eqn 2.6, can be verified that 
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where ∫ σ= dzzrzrf rr ),(),( , ∫ τ= dzzrzrf rzz ),(),(  and ∫ θθ τ= dzzrzrf r ),(),( . These forms show 

that azimuthal decomposition of stresses and forces is identical to the one of displacements. Azimuthal 

function θncos  or θnsin  selection depends on the physics of the problem. For horizontal 

excitation gx , their components in cylindrical coordinates are θ= cosgg xu , 0wg =  and 

θ−= singg xv . Note that the analysis of symmetrical vibrations just requires the azimuthal number 

1n = . Thus, the three-dimensional problem is reduced to a two - dimensional one in the plane zr − . 
 

2.3. Boundary conditions 
 

In order to solve the interaction problem, spatial domain is divided in two regions: 1) one interior 

i ( orr ≤ , sHz0 ≤≤ ) for the shaft and the supporting soil and 2) another exterior e ( orr ≥ , sHz0 ≤≤ ) 

for the surrounding soil, being or  the radius of the shaft and sH  the depth of the soil deposit. Exterior 

region is formed only by soil layers, whereas the interior is formed by layers of both, shaft and soil.  
To satisfy conditions of compatibility in the interface between regions, the method of nodal points 

collocation is used. In each region, fields of nodal displacement and forces can be built by 

superposition of the free field and a diffracted field as follows: 
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where:  

f
εδ

~
 = vector of free field displacements in ε  

ffε
~

 = vector of free field forces in ε  

d
rδ

~
 = vector of diffracted displacements in ε  

dfε
~

 = vector of diffracted forces in ε  

ε∆
~

 = matrix of modal displacements in ε  

rF
~

 = matrix of modal forces in ε  

εC
~

 = vector of coefficients of participation in ε  

 

Boundary conditions that must be satisfied in the interface between regions are the compatibility of 
nodal displacements and forces, that is 
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Replacing Eqs 2.17 and 2.18 in Eqs 2.19 and 2.20, respectively, next matrix system of algebraic 

equations is obtained 
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Solving this equation system with a standard Gaussian elimination method, coefficients of 

participation that define the nodal displacements and forces fields in both regions are obtained. 
 

 



3. NUMERICAL IMPLEMENTATION 
 

3.1. Diffracted fields 
 
By appliying the thin layer method (Lysmer y Waas, 1972; Lysmer y Drake, 1972), it is easy to 

demonstrate that the discrete eigenfunctions )( jzU  and )( jzW  with eigenvalue k that satisfy the 

equations of motions in plane deformation, the continuity of stresses and displacements between layers 

condition and free surface and rigid base boundary conditions, are obtained by solving the algebraic 

problem of characteristic values. 
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is an eigenvector of nodal amplitudes and A
~

, B
~

, G
~

 and M
~

 are matrices of N2N2 ×  assembled with  

layer matrices for plane deformations elements (Tassoulas y Kaussel, 1983). After solving Eqn. 3.1 it 

is necessary to select the values of lk  and lΛ
~

, N2l1 ≤≤ , such that modal displacements in exterior 

region decay with distance. In order to fulfill this condition of radiation, it is required that [ ] 0kIm l < .   

 

Also it is easy to demonstrate that discrete eigenfunction )( jzV  with eigenvalue k that satisfies the 

equation of motion in antiplane shear, continuity of stresses and displacements between layers 
condition and free surface and rigid base boundary conditions, are obtained by solving the algebraic 

problem of characteristic values 
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is an eigenvector of nodal amplitudes and A
~

, G
~

 and M
~

 are matrices of NN×  assembled with the 

layer matrices for antiplane shear elements (Tassoulas y Kaussel, 1983). After solving Eqn. 3.2 it is 

necessary to select the values of lk  and lΛ
~

, Nl1 ≤≤ , such that modal displacements in the exterior 

region decay with distance. In order to fulfill this condition of radiation, it is required that [ ] 0kIm l < .   

 

Once solved the problems of characteristic values in plane deformation and antiplane shear, matrices 

of modal displacements and modal forces in the cylindrical surface orr =  can be built following the 

expressions provided by  Kausel and Roësset (1975 y 1977) and Tassoulas and Kaussel (1983).  
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The eigenvalues N21 kk ,...,  and N31N2 kk ,...,+  correspond to Rayleigh and Love generalized modes, 

respectively. Hankel function of second specie and order n, )()( ξ=ξ 2
nn HC ,  must be used for wave 

radiation in exterior region. As well, Bessel function of first specie and order n, )()( ξ=ξ nn JC , must 

be used for steady waves in the interior region. 

 



Nodal forces acting in the cylindrical surface orr =  can be obtained by integrating the corresponding 

stresses with respect to z. This discretized forces are in static equilibrium with the layer stresses and 

are consistent with the considered linear interpolation of displacements. Kausel and Roësset (1975 y 

1977) and Tassoulas and Kaussel (1983) provide expressions to construct the matrix of nodal forces. 

 

3.2. Free fields 

 

Free field displacements due to vertical incidence of shear waves, in cylindrical coordinates, are 
expressed as 
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with )z(V)zr(v)zr(u == ,, . Following Tassoulas and Kausel formulation (1983) for vertical 

propagation, 0k = , nodal amplitudes )z(V j  are obtained from the algebraic equation system 
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, 1Nj1 +≤≤ . To solve it is necessary to impose g1N xV =+  at the base, eliminating 

the last row-column of the matrices G
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 and M
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 and the  last element of the vectors V
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 and 0
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Finally, with free field displacements 
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free field forces are obtained 
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where D
~

 is the matrix used in Eqn 3.8, multiplying columns 1j3 −  by -1. Due to the structure of this 

matrix, radial and tangential forces are null for horizontal excitation. 

 

3.3. Shear force and bending moment 

 

Given the nodal forces j
rf  y 

j
fθ  in the cylindrical surface orr = , the resultant force in lateral direction 

is determined by integration with respect to θ : 
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The resultant force in vertical direction is null. Note that the shear and normal nodal forces contribute 

in the same proportion to the lateral thrust. Once lateral forces are known, shear force zQ  and bending 

moment zM  at z  level can be computed by simple static. 

 

 

4. NUMERICAL RESULTS 
 

4.1. Example 1: Comparison with Veletsos and Younan 

 
Analytical solution of Veletsos and Younan (1994; 1995) was considered for this example 

corresponding to a rigid cylinder fixed at the base of an homogeneous layer. For harmonic excitation 



of the basement, static values of base shear force bending moment. Shear force oQ
~

 and bending 

moment oM
~

 are normalized with respect to 2
ogso Hxr ɺɺρπ  and 3

ogso Hxr ɺɺρπ , respectively, where gxɺɺ  

denotes the peak ground acceleration at rock. Static values correspond to a harmonic excitation with 

frequency much smaller than the fundamental frequency of the layer. Resultant effects do not have to 

be confused with the effects due to gravitational loads. In the equivalent version of the system with 

fixed base, the static excitation is represented by lateral body forces with intensity gs xɺɺρ− for the soil 

and goxɺɺρ−  for the structure. Figure 1 shows the variation of base shear force and bending moment 

with respect to the slenderness ratio, oo rH , for a soil deposit with =νs 0, 1/3 y 1/2, and =ζ s 0.05.  

 

 
 

Figure 1.  Comparison of static values of base shear force and bending moment numerically obtained (dashed 

lines) versus analytical results (solid lines), for =νs 0 (left), =νs 1/3 (center), =νs 1/2 (right). 

 

Comparison of numerical and analytical results shows an excellent agreement, especially when the 

Posson ratio is not close to 0.5. In this case, analytical solution present differences due to a strong 

hypothesis consisting in neglecting the vertical component of the motion. For this reason, the 

analytical solution is susceptible when =νs 1/2. 

 

4.2. Example 2: Comparison with Nicolau et al. 

 
Analytical solution of Nicolau et al (2001) was considered for this example. This one is based on an 
approximated model of beam on elastic foundation. The geotechnical model of the soil consists in two 

layers. For the resonant frequency, 1ω ω= , the case of an embedded pile in a soil deposit formed by two 

layers with rigid base is analyzed. Parameters of the system are: =dL / 20, =1p EE / 1000, 

=Lh1 / 2/3, =Lh1 / 1, =21 VV / 1/2, =ρρ 21 / 0.8, =ν=ν 21 0.4 and =ζ=ζ 21 0.1. Here L is the 

length of the pile, d is the diameter of the pile, Ep and E1 are the elasticity module of pile and soil, 

respectively, h1 is the thickness of the top layer, h3 is the distance between the base of the pile and the 

base of the bottom layer, V, ρ, ν and ζ are the shear wave propagation velocity, mass density, Poisson 

ratio and damping, respectively. Subindex 1 and 2 indicate top and bottom layers, respectively. 

Bending deformation computed by Nicolay et al (2001) is related with bending moment by means of   
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Comparison of bending deformation and bending moment against the computed values using the 
developed method are shown in Figure 2. Major difference is observed in the base of the pile, and it is 

due to the boundary condition used. Free stress support has been considered when, in fact, a 

displacement and force compatibility condition is had.  
 

Note that the Nicolau et al (2001) method is approximated, since the soil-pile system is modeled as a 

beam on elastic foundation. In order to consider the continuity condition at the base, it is necessary to 

include translational and rotational springs substituting the supporting soil instead of the free stress 

support. Difficultness to do that relies on the nature of the expressions of such springs, since they 

correspond to superficial discs, disregarding the depth of foundation effect. 

 

 
 

Figure 2.  Comparison of bending deformations and moments along the pilot computed with the Nicolau et al 

(2001) method (dashed line) and this method (solid line)  

 

4.3. Example 3: Comparison with Zeevaert 

 
In case of supported pilots in a hard layer, it can be supposed that the pilot is articulated at the end. 

However, in case of same supported piles, and considering these foundation elements are quite rigid 

due to their great diameter, the restriction of rotation of the supporting base is very important in the 

interaction analysis. The reason is because the moment developed there is proportional to the size of 
the base and to the stiffness of the supporting soil. The simplest design approach is that one in which 

the interaction of the underground structure with the surrounding soil is neglected. With this approach, 

first the soil deformation of free field are estimated, and then, the structure is designed to be adjusted 
to these deformations. Result is acceptable when the stiffness of both elements are similar. Contrarily, 

is necessary to consider the dynamic interaction effects due to the stiffness contrast between the soil 

and the structure. Zeevart (1983) proposed a practical method to compute seismic forces in shafts 

caused by the ground motion. However, the effect of frequency of excitation in the inertia of the soil is 

neglected. Also, seismic excitation is accounted for in approximated way by yielding the peak ground 

acceleration in the surface and estimating the lateral displacements configuration. Despite of these 

limitations, the method is very useful to show the importance of the supporting condition (articulation 

versus fixation) of the shaft.   

    
In his work, Zeevaert (1983) proposes a layered media composed by 8 layers, with dominant period 

Ts=0.95 s. In this medium there is a shaft with 2 m radius and 16 m length connected in its base to a 

tunnel modeled as a rotational spring. For a 1 m/s2 acceleration in the soil surface, he obtains shear 
force (Qz) and bending moment (Mz) profiles. Table 1 contains dynamic soil parameters derived from 

Zeevaert stratigraphic model. Excitation was modeled with synthetic accelerograms that fulfill, in 

average, whit the uniform hazard spectrum for hill zone in the valley of Mexico, scale to produce 1 
m/s2  in the surface of the soil. Parameters of the shaft are: Vs = 2200 m/s,  ν=0.2, ζ=5% and γ=2.2 

t/m3. Figures 6 shows (A) relative displacements, (B) shear force and (C) bending moment for the 

three selected supporting conditions for the shaft: (top) Floating in the soft soil (16 m length), (middle) 

supported in the half space (17 m length) and (bottom) fixed in the half space (18 m length). 



Table 1. Dynamic Properties Of The Stratigraphic Model Proposed By Zeevaert (1983). 

Layer Thickness (m) Vs(1)
 (m/s) γ(2)

 (t/m3) ν(3) ζ(4)
 % 

1 2 41 1.75 0.45 5 

2 2 48 1.70 0.45 5 

3 2 57 1.80 0.45 5 

4 2 57 1.80 0.45 5 

5 2 65 1.85 0.45 5 

6 2 65 1.85 0.45 5 

7 2 80 1.85 0.45 5 

8 3 80 1.85 0.45 5 

Half space ∞ 500 2.00 0.45  

(1) Shear wave velocity, (2) Volumetric weight, (3) Poisson ratio,  (4) Damping 

 

 
 
Figure 6.  A) Relative displacements (right), B) Shear Force (center) and C) Bending Moment (left) for a 

floating (top), supported (middle) and fixed (bottom) shaft. Exact solution is shown with solid lines whereas 

Zeevaert solution is shown with dashed lines. Free field displacement (without SSI) is shown with dotted lines. 



Relative displacements are shown at left in these figures. Exact solution of free field is indicated with 
dotted lines whereas Zeevaert approximation is indicated with dashed lines. Relative displacement of 

the shaft for each condition (floating, supported and fixed) is indicated with solid line. Note that 

Zeevaert approximation overestimates free field displacement in little more than 20%. Note that 
relative displacement of the shaft follows ground displacement for floating condition and also that its 

displacement is reduced when fixed condition.  

 

Rigorous (solid lines) and Zeevaert approximation (dashed lines) shear forces are shown at the center 

of each row. Note that floating condition reduces substantially shear forces in comparison to supported 

condition (85%) and that Zeevaert solution provides values slightly smaller than the ones obtained 
with the supported condition (differences of 20% at the base). It has an increment of 16% in the fixed 

condition with respect to the supported condition. 

 
Finally, rigorous (solid lines) and Zeevaert approximation (dashed lines) bending moments are shown 

at the right of each figure. Again, it is appraised that the floating shaft condition significantly reduces 

the moments with respect to the supported shaft condition (75%). As in shear forces, Zeevaert 
approximation yields bending moments that are slightly smaller than the ones obtained for the 

supported shaft condition (17%). An increment of 19% with respect to the supported shaft condition is 

had in the fixed shaft condition.  
 

 

5. CONCLUSIONS 
 

A modal superposition method for seismic analysis of floating flexible shafts has been presented. The 

method has been validated by comparison with theoretical results of rigid shafts fixed at their base 
(Veletsos and Younan, 1995, solution) and with numerical-approximated results for an embedded pilot 

in a two layer medium (Nicolau et al, 2001). The method also was validated with an approximated 

numerical result for an elastically supported shaft (Zeevaert, 1983). It was observed that the floating 

condition at the base has great influence in the magnitude and distribution of the soil actions. Excellent 

results were obtained in all these comparisons.  
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