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SUMMARY: 
This paper presents a new method to develop stick models for building structures having mixed shear walls and 
columns in two major steps. First, a macro beam member is used to represent a storey, and its sectional 
properties, including the location of centroid, sectional area, and area moments of inertia are determined using 
the Euler–Bernoulli beam theory. Second, the translational stiffnesses of each storey are determined based on the 
rigid floor assumption so that the centre of rigidity, torsional constant, and shear coefficients are found for the 
macro beam. After deriving the formulas, example analysis is conducted to compare the frequency response of 
the stick model with that from finite element analysis to validate the method. Results indicate that this type of 
stick models can consider the effects of the shear-wall out-of-plane stiffness and the eccentricity between the 
centroid and centre of rigidity of the macro beam. The proposed method can capture the dynamic feature to 
obtain adequate structural response and can be applied in the seismic analysis of mixed wall-column building 
structures. 
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1. INSTRUCTION 
 
Seismic analysis of simple structures using lumped-mass stick models is very cost efficient and can 
provide direct insights to the overall seismic behaviour of the structure being analyzed. In the past 
several decades, lumped-mass stick modelling of structures and equipment has been widely used in the 
seismic qualification of Systems, Structures, and Components (SSCs) of Nuclear Power Plants 
(NPPs). When developed and applied appropriately, lumped-mass stick models can produce accurate 
results in a much more economical way by comparison to a full-scale detailed finite element seismic 
analysis. In the past, when developing a stick model for a building structure, the shear shape factors 
are often calculated as the ratios of the total area over the effective area taking shear forces in a 
specific direction. While this simplification may be acceptable for a structure with mostly shear walls, 
it may not be suitable for a more complex structure consisting of columns and shear walls. 
 
Lumped-mass stick models are simple and efficient to be applied in practice for predicting 
acceleration response of structures. The basic conception of using a single member to represent a 
storey of a column-framed building can be found in the literature (Chopra 1995). In nuclear industry, 
shell and shear-wall structures are often analyzed based on the beam theory that accounts for torsion 
effect (ASCE 1998). However, it is not completely clear how a lump-mass stick model can be 
developed for structures with mixed walls and columns. This study proposes a method to deal with 
such a problem based on the assumption of rigid-floor diaphragms. Each vertical stick member is 
modeled by a beam associated with shear deformation. Basic formulas are derived for determining the 
cross-sectional properties, and example analysis illustrates the accuracy of the proposed method. 
 
 
2. STICK MODELING BASED ON STOREY STIFFNESS 
 
It has been recognized that the stiffness of floor systems in column-framed buildings is considerably 
higher than the storey stiffness due to columns. Thus, each floor diaphragm composed of slabs and 
beams is able to be assumed rigid so that the diaphragm is constrained to move as a single unit in the 



horizontal plane. For column-framed structures, using rigid-floor body assumption one can derive 
analytical formulas to calculate the storey stiffness. For structures with shear walls, although the in-
plane deformation of a diaphragm can be assumed negligible, its out-of-plane stiffness is generally not 
rigid. This section provides a discussion on how the in-plane and out-of-plane rigid assumption is 
applied to generate stick models. 
 
2.1. Symmetrical Building Frameworks 
 
In establishing a lumped-mass stick model, the assumption for a floor diaphragm plays a key role in 
determining the stiffness properties. For an actual frame in Figure 1(a), if the deformation of a floor 
system is taken into account, no simplified method can be used to determine the stiffness properties 
for dynamic analysis by hand computation. Even the assumption of in-plane rigid diaphragm is 
applied as shown in Figure 1(b), it is still hard to determine the member stiffness in a storey based on 
analytical formulas because of the effects of its upper and low stories.  
 
 
 
 
 
 
 
 
 
 
 
 
When a rigid-floor body is assumed (i.e., both in-plane and out-of-plane floor stiffnesses are assumed 
rigid), a wall or column member in a storey can be assumed fixed at its two ends as shown in Figure 
2.1(c). In this case if a pair of force F in Figure 2.1 (a) is applied in a storey, the force and deformation 
are limited to the storey only, because of the rigid-floor body assumption. The lateral stiffness kxj of 
the jth member in the storey due to relative unit displacement in direction x can be expressed as 
 

3

12
(1 )

yj
xj

xj

EI
k

H ϕ
=

+
 (2.1) 

 
where E, Iyj, H are respectively the Young’s modulus, moment inertia of the member, and the storey 
height. In Eqn. 2.1, term ϕxj is a factor accounting for shear deformation in direction x, and is given by 
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where Asxj and fxj are the shear area and shear coefficient defined for wall j in direction x. For 
rectangular cross sections, the shear coefficient fxj =1.2 (Gere 2001). Upon applying Eqn. 2.1 to each 
column/wall member in the storey, the storey stiffness contributed by all the vertical members can be 
expressed as 
 

 
in which it is assumed that all members in the storey have the same height H and material property E. 
It is of interest to discuss the following special situations associated with fxj =1.2 and the ratio E/G 
about 2.3 for concrete materials. First, from Eqn. 2.2 for a column with ratio bj/H less than 0.1, the 
value of the factor ϕxj in Eqn. 2.2 is less than 0.05, which can be ignored in computing the stiffness in 
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Figure 2.1.  Assumptions of floor diaphragms  

(b) In-plane rigid

 (2.3) 

(c) Rigid-floor body 



Eqn. 2.1. Thus, when the effect of member shear deformation is negligible, the following storey 
stiffness is obtained 
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In this special case, an equivalent moment of inertia Iye is introduced 
 

ye yjI =∑  (2.5) 
 
which indicates that for a storey having no rotation at its two ends, the equivalent storey member can 
be treated as a macro “beam” with moment of inertia Iye. It should be noted that this equivalence is 
only for the purpose of dynamic analysis because this moment of inertia is not determined using the 
beam theory for the macro member. In the second special case, if the ratio of bj/H in Eqn. 2.2 
approaches or even exceeds 1 for a wall member in the storey, the factor ϕxj will dominate the storey 
stiffness. In an extreme case, say bj/H>2, the flexural deformation can be ignored, and the stiffness in 
Eqn. 2.3 reduces to 
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where Asx is an equivalent shear area equal to the summation of the shear areas of all shear walls 
parallel to direction x. Eqn. 2.6 indicates that for a storey of building structures with pure shear walls, 
the storey stiffness is proportional to the storey shear force. Note that if the storey has mixed columns 
and walls, judgment should be exercised to determine the contribution of columns and walls to the 
storey stiffness. In general, the storey stiffness should be determined using Eqn. 2.3 to reduce the 
uncertainty of prediction. 
 
2.2. Torsion Effect 
 
Although seismic design requires symmetrical configuration of floor plan and symmetrical 
arrangement of vertical supporting members, the centre of mass may not coincide with the centre of 
force resistance. Thus, even for biaxial symmetrical buildings, accidental eccentricity of mass is 
required to be considered (NBCC 2011). For buildings in nuclear industry, the structural components 
and the mounted equipment cannot be arranged exactly in symmetry. Torsion effect on structural 
response has to be considered in developing the stick models. It is a common practice to make the 
assumption of rigid floors in dealing with torsional effect (ASCE 1998). To account for torsion, the 
storey stiffnesses in both horizontal x and y directions should be determined. The resultant shear 
forces, passing through a so-called centre of stiffness, are proportional to these two stiffnesses. Similar 
to the storey stiffness in Eqn. 2.3 for direction x, the storey stiffness in y direction is given by 
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Thus, the centre of stiffness can be determined by storey shear force in each of the two perpendicular 
directions. Assume each member in the storey has the same displacement δx in direction x as shown in 
Figure 2.1, the shear force in member j is Fxj = kxjδx as shown in Figure 2.2. The centre of the shear 
forces in direction x of the storey is defined by ys as 
 

/ /s xj x j xj xy F F y k= =∑ ∑ k  (2.8) 
 
In a similar manner, when the displacement δy is imposed in direction y alone, the centre of the shear 
forces in the direction is defined by xs as 



 
/s j yj yx x k k=∑  (2.9) 

 
In Eqns. 2.8 and 2.9, coordinate (xj, yj) is the centre of shear force of the vertical member j. It is 
interesting to note that the determination of the centre of stiffness may be relevant to the moments of 
inertia Ixj and Iyj alone for column-framed structures based on Eqn. 2.5, while relevant to the shear 
areas Asxj and Asyj alone for shear-wall-framed structures from Eqn. 2.6. On the basis of the storey 
shear forces and the centre of stiffness defined previously, the torsional stiffness Kz can be determined 
by the torques about the centre of stiffness. Assume a rotational angle θ about the centre of stiffness as 
shown in Figure 2.3, the two translations along x and y directions can be found to be 
 

sin ( )xj j j j sr y yδ θ α θ= − = − −  (2.10a) 
cos ( )yj j j j sr x xδ θ α θ= = −  (2.10b) 

 
where rj is the distance between the centre of stiffness and the force centre of member j, and αj is the 
angle between the rj line and x axis. From Eqns. 2.10 the shear forces in x and y directions can be 
expressed in terms of the corresponding displacement and stiffness. Thus, the torque due to these shear 
forces is expressed as 
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2[ ( ) ( ) ]z xj j s yj j sK k y y k x x= − + −∑  (2.12) 

 
where Kz is defined as torsional stiffness. Again from the two special cases defined in Eqns. 2.5 and 
2.6, the torsional stiffness in Eqn. 2.12 may be relevant to the moments of inertia Ixj and Iyj alone for 
column-framed structures, while relevant to the shear areas Asxj and Asyj alone for shear-wall-framed 
structures. It is noted that no warping torsion is considered in the above derivation, and the effect of 
warping on the stiffness of stick models and on the structural response may be an interesting topic in 
the future research work. 
 
 
 

Figure 2.3. Idealized stick model 
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2.3. Computer-based analysis 
 

Figure 2.2. Centre of stiffness and to
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Based on the formulation derived above, a lumped-mass stick model can be established as shown in 
Figure 2.3 for the dynamic analysis of structures. In this model, each vertical member with storey 
stiffness (kx, ky, Kz) is located at its centre of stiffness determined by Eqns. 2.8 and 2.9. A rigid link is 
used to connect the two ends of the adjacent two vertical members at the same elevation, and the 
concentrated mass m located at its centre of mass is rigidly connected to one of the centres of stiffness. 
It is seen that the eccentricity between mass and stiffness centres is considered. A stiffness matrix [K] 
can be formed using Eqns. 2.3, 2.7, and 2.12. A diagonal lumped-mass matrix [M] can then be 
determined by static equivalence to concentrate the distributed mass and mass moments of inertia on 
the corresponding floor elevations that correspond to the structural stiffness matrix. As such, dynamic 
analysis can be conducted to find the structural response of vibration modes, frequencies, 
accelerations, and floor response spectra etc. 



 
If the storey stiffnesses and lumped masses can be directly input into a computer program, the 
dynamic analysis of structure can be automatically completed. However, conventional commercial 
software (e.g., ANSYS) requires inputting member cross section A and moment of inertia I for each 
beam member rather than the storey stiffness. Thus, the above storey-based stiffnesses have to be 
transformed into the cross-sectional member properties. This is difficult to conduct such a 
transformation except for a special case, where the structure is framed with columns alone. In this 
case, the cross-sectional area A can be obtained by algebraic summation of the areas for all the vertical 
members in the storey, and the equivalent moment of inertia Iye is determined by Eqn. 2.5, which is the 
algebraic summation of the moments of inertia for all the vertical members in the storey. For the 
computer-based analysis, the torsion constant J of the cross-sectional area is also required to account 
for torsion. Given the torque-rotation relation defined in Eqn. 2.11 and the torsional stiffness in Eqn. 
2.12, similar to the torsion of members with circular cross sections, the torsion constant can be 
equivalently expressed by 
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For the special case when the storey members consist of walls alone, substituting Eqns. 2.6 and 2.7 
into Eqn. 2.12, then Eqn. 2.13 can be expressed as 
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It is important to note that to match the assumption of rigid-floor body as indicated in Figure 2.1(c), 
the rocking rotations at both ends of each vertical member in Figure 2.3 should be rigidly restrained to 
meet the rigid-floor assumption. However, in current practice, such a rocking restraint may not be 
applied in the computer-based stick model. This may cause error to some degree. For instance, when 
rigid-floor body assumption is applied for a single storey frame, a system of single degree of freedom 
is obtained. The frequency f, using the stiffness defined in Eqn. 2.3, is found to be 
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If the computer-based model with top infinite-rocking restraint is used, the same result will be 
obtained as that given in Eqn. 2.15. However, when the computer-based model is adopted without the 
top rigid-rocking restraint, the frequency will have the following expression 
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which is 50% lower than that provided in Eqn. 2.15. One may argue that because a floor diaphragm 
system is not rigid exactly in actual frameworks, releasing the rocking restraints at floor levels can 
rectify the original assumption. However, analysis results show that compared to those from the finite 
element analysis for frames with columns, the rigid-floor body can lead to much accurate predictions 
(Lu and Lin 1999). Therefore, it is suggested that the rigid-rocking restraints be imposed on each floor 
elevation of column-framed structures. 
 
 
3. STICK MODEL USING MACRO BEAMS 
 
To improve the stick modeling discussed in the previous section, a new method is discussed in this 
section. The key issue is that the rigid-diaphragm assumption may not be appropriate for the storey 
with shear walls because the lateral storey stiffness due to shear walls may be considerably stronger 
than the out-of-plane stiffness of the floor diaphragms. Research has indicated that using rigid-floor 
assumption could cause erroneous results because of the strong storey stiffness of shear walls 



(Boppana and Naiem 1985). Thus, this section provides a method to develop stick models based on the 
beam theory that accounts for shear deformation.  
 
It is helpful to recall the method of developing stick models for pure shear-wall structures. The nuclear 
reactor containment often has enclosed-tube section, and a storage tank has hallow-rectangular section. 
For this type of structures, a stick model can be developed using a macro beam to represent a storey. 
The member sectional properties include the cross-sectional area A, moments of inertia Ix and Iy, and 
polar moment of inertia or torsional constant J, which is often equal to Ix+Iy. Compared to a 
conventional beam, the macro beam has significant shear deformation. The two shear coefficients fx 
and fy should be taken into account in the modeling. Compared with the results of finite element 
analysis, the stick model can produce very accurate results as long as the number of nodes is not less 
than twice of the highest mode number of interest (ASCE 1980). Similar concept can be applied to 
determine the flexural properties of stick models for structures with walls and columns.  
 
3.1. Member Properties Based on Beam Theory 
 
It is desirable to use one stick to capture the bending, shearing, and axial loading of a wall-column 
structure subjected to earthquake. The section properties relating to axial and bending loading of the 
macro beam are determined as done for an ordinary beam member. To that end, the section properties, 
including the values of cross-sectional area A, centroid xc and yc of the area, moments of inertia of area 
Ix and Iy, and polar moment of inertia about the coordinate system with origin at the centroid of the 
stick for each storey with height H are presented in this subsection. Following the procedure for the 
case of sections with closed walls/shells, the coordinate of the centroid or geometrical centre C (xc, yc) 
of the cross-sectional area A is determined for the macro beam and is given by (Gere 2001) 
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where Aj is the area of the jth wall/column component with centroid (xj, yj), and A is the total area of 
the storey cross section.  If the cross section has one symmetric axis, the centre is located at that axis; 
if the section has two axes of symmetry, the centre is at the intersection of the axes of symmetry. Once 
the coordinate (xc, yc) of centre of cross section is found, the bending behaviour of member is 
estimated based on the coordinate system with origin (xc, yc).  Thus by using parallel-axis theorem, the 
second moments of area are expressed as 
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where Ix and Iy are the moments of inertia about yc and xc axes; Ixj and Iyj are the moments of inertia 
about the principle centroid axes of member j in the storey. Normal stresses and rotations of the cross 
section due to bending are dependent on the moments of inertia. The polar moment of inertia I0 can be 
obtained by (Ix+Iy). 
 
Note that the resultant force of axial forces passes through this centre, and this is important to vertical 
vibration of the stick model. At the same time, the moments of inertia, Ix and Iy about the principal 
coordinate system x1Cy1 are calculated. It is seen that the axial and flexural loading is coupled and 
considered simultaneously.  
 
3.2. Modelling account for torsion 
 
The torsion properties are determined to capture torsion effect. It is well-known that when the 
centriod, centre of shear, and centre of mass are coincident, the St. Venant torsion is uncoupled with 
bending and axial loading. However, when eccentricities of the three centres occur, the coupled 
torsion effect should be considered. The following two ways may be applied to deal with such an 
effect. The first way follows the thin-wall theory, and the centre of shear is determined based on the 
shear flow. The corresponding torsional constant is determined by 
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where tj is the wall thickness, which is far less than the length bj of the wall. Because the value of J in 
Eqn. 3.3 is considerably less than that of the moment of inertia Ix+Iy, torsional buckling is significant 
for member with thin-walled section. Once the centre V is determined, any transverse force passed 
through this centre will not cause torsion, and the analysis of conventional beam can be performed. 
Note that for complicated cross sections, it is difficult to find the centre of shear. It has been shown by 
comparing the results from finite element analysis that using Eqn. 3.3 to account for torsion could lead 
to significant error for shear-wall building structures. As well, a storey of building structures is not 
similar to a thin-wall member. Thus, the following storey-based method is adopted. 
 
The storey-based stiffness method, described in the previous section, can lead to better results in the 
dynamic analysis of structures. In this method, the storey stiffness kx and ky are computed first, and 
then the centre of stiffness S is determined using Eqns. 2.8 and 2.9 and accounting for shear 
deformation. And finally, the torsional constant J can be determined using Eqn. 2.13. The first 
modification is using the equivalent torsional constant J defined in Eqn. 2.13 to replace the polar 
moment of inertia I0 (Ix+Iy). In other words, the lateral storey stiffnesses kx and ky are used to determine 
the coordinate xs and ys of the centre of stiffness, and then torsional stiffness Kz is used to determine 
the equivalent torsional constant J. 
 
If the way based on thin-wall theory is referred to as shear centre method, the way based on storey 
stiffness can be referred to as stiffness centre method to deal with torsional effect. It has been shown 
that the stiffness centre method is better than the shear centre method to account for torsion (Chokshi 
and Lee 1976). Thus, this study recommends the stiffness centre method be applied to analyze shear-
wall type of structures. 
 
3.3. Modelling account for shear deformation 
 
It is well-known that shear deformation is significant for both shear walls and column-framed 
structures. Although the shear coefficient for shear-wall structures can be approximately determined 
based on current experience, it is hard to determine the shear effects in the case of a macro member 
with mixed columns and walls. Because shear stress is not uniformly distributed over the cross 
section, a shear coefficient f or its reciprocal κ is commonly introduced to obtain an effective shear 
area 
 

/sA A f Aκ= =  (3.4) 
 
where A is the total cross-sectional area as determined before. Upon using this approach, it is 
convenient to use an equivalent shear force from the uneven shear stress over the section. There are 
some ways to calculate the shear coefficient, and for beam member the formula can be readily found 
in the literature (Gere 2001). Because this coefficient is an integral integrating over the section, the 
shape of the section has to be defined. For irregular cross sections of structures with walls and 
columns, it is hard to define the section shape of the macro beam and the factor f in Eqn. 3.4 cannot be 
easily found.  
 
For pure shear-wall structures, the shear area As is approximately equal to the summation of all the 
areas of shear walls parallel to the direction under consideration so that the shear coefficient in Eqn. 
3.4 is determined. It is seen that when this method is applied, the out-of-plane stiffness of the wall is 
ignored. Furthermore, this method cannot be applied for a column since it belongs to the two 
horizontal directions. Therefore, a reasonable method should be employed to define the shear 
coefficients. If the area A and area moments of inertia Ix and Iy of the macro beam for an actual storey 
are determined using Eqn. 3.2, the following equivalence of storey stiffness can be applied to 
determine the shear coefficients.  



 
It is assumed that the macro beam for a storey has the same area moments of inertia about x and y 
axes. The lateral stiffness accounting for bending and shear deformations of the macro beam with 
fixed ends is equal to the corresponding lateral storey stiffnesses obtained from Eqns. 2.6 and 2.7 for 
the storey. Thus, the equivalence of lateral stiffnesses can be expressed as 
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It is important to point out that the storey stiffness kx and ky are determined based on the rigid floor 
assumption, while determining the area moments of inertia Ix and Iy of the macro beam does not use 
the rigid floor assumption. Thus, Eqn. 3.5 only serves as a way to determine shear coefficients of the 
macro beam. The two terms ϕx and ϕy in Eqn. 3.5 have similar definition as that in Eqn. 2.2 
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where only parameters fx and fy are unknown. From Eqn. 3.5, terms ϕx and ϕy can be expressed in 
terms of E, Ix, Iy, kx, ky, and H, which are known for a specified storey. Upon using Eqns. 3.5 and 3.6, 
the two unknown shear coefficients fx and fy are obtained and given by 
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which are obtained from the combined beam theory and storey-based structural analysis. Thus, a 
macro beam is developed to model a storey of building structures accounting for storey shear 
deformation. Note that this method is still somehow approximate since the rigid floor assumption is 
applied in the derivation. 
 
3.4. Procedure of Developing Stick Models 
 
It is seen from the discussion in the previous subsections that a stick model for a mixed wall-column 
structure can be developed using macro beam members capable of modeling storey shear deformation. 
Two major steps are taken in the process: a storey is represented by a macro beam, and its area, 
centriod, and moments of inertia are determined following conventional beam theory; the effects of 
torsion and shear deformation are considered based on storey stiffness on the basis of storey-based 
structural analysis. Thus, the established macro beams for the stick model behave like Timoshenko 
beams, which capture both bending and shear deformations. Based on the derivation above, the 
procedure of developing lumped-mass stick models using the proposed method can be summarized as 
follows: 
 

(1) Compute the cross-sectional A and centriod (xc, yc) for each storey using Eqn. 3.1; 
(2) Calculate moments of inertia Ix and Iy about the principle axes at centriod using Eqn. 3.2; 
(3) Compute storey stiffness kx and ky for each storey using Eqns. 2.4 and 2.7; 
(4) Determine the centre of stiffness (xs, ys) based on Eqns. 2.8 and 2.9; 
(5) Calculate torsional stiffness Kz and torsional constant J using Eqn. 2.13; 
(6) Compute the shear coefficients fx and fy using Eqn. 3.7; 
(7) Determine the mass m, its centre (xm, ym), and mass moment of inertia. 

 
Upon using the procedure, an example of two-storey building will illustrate the analysis results in the 
following section. 
 



4. EXAMPLE ANALYSIS  
 
To show the computation results from the proposed method above, a two-storey building as shown in 
Figure 4.1 is adopted in this example analysis. In the first storey shown in Figure 4.1(a) , all columns 
have square cross section of 0.4 by 0.4 m, while all walls have cross section of 0.3 by 2 m. The second 
storey in Figure 4.1(b) has only columns with cross section of 0.3 by 0.3 m. As shown in Figure 
4.1(c), the storey heights are 6 m and 4 m for the first and second storeys. In developing the stick and 
FEA model, the Young’s modulus and Poisson’s ratio of the applied concrete material are 2.8E10 
MPa and 0.15 for all walls and columns. For simplicity, the distributed masses are assumed to 
concentre to the two floor elevations, where the slabs have thickness of 0.4 m and 0.3 m for the first 
and second floors respectively and have density of 2400 kg/m2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Upon using the dimensions and material properties as well as the corresponding formulas, the lumped-
mass stick model is developed and shown in Figure 4.1(d). The two concentred masses m1= 172.8 ton 
and m2= 86.4 ton, which are located at the corresponding centres of stiffness in Figure 4.1(d). After 
conducting modal analysis for this stick model, the first six frequencies are obtained and shown in 
Table 1. For the purpose of comparison and validation of the proposed method, a finite element model 
is developed using beam and shell elements. Four beam elements are divided for each column, and 
sixty-four shell elements for each wall panel in a storey. For each slab panel in a bay, at least 64 shell 
elements are applied for the finite element analysis (FEA). After conducting modal analysis for this 
FEA model, the first six frequencies are obtained and provided in Table 1 as well. To assess the 
influence of floor rigidity, it is assumed that all other properties are remained unchanged except that 
the Young’s modulus of the slabs is assumed as 2.8E10, 2.8E11, 2.8E12, and 2.8E13.  
 
It is expected that the first six frequencies determined using the stick model shown in Figure 4.1(d) are 
close to those obtained by the finite element analysis when the floor slabs are rigid with Eslab = 2.8E13. 
No error occurs for the first two frequencies, and less than 0.6% error for other frequencies. This 
indicates that upon using the assumption of rigid floor slabs, the proposed stick model can lead to 
almost the same results from the FEA. It is interesting to note that in reality the floor slabs are not 

Figure  4.1. A two-storey wall-column structure 

(a) Plan of storey 1 

(c) Elevation  
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(b) Plan of storey 2 
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(d) Stick model 



rigid and if the actual Eslab = 2.8E10 is applied; the lumped-mass stick model will overestimate 20% of 
the first frequency, and 18% for the second frequency. Meanwhile, the torsional frequency (f3) is 20% 
overestimated. Much more significant error happens for the high frequencies. It is observed form 
Table 4.1 that, with the increase of slab stiffness, the error from stick model decreases. Note that the 
floor diaphragm is not rigid in reality and a method applied in un-braced frames (Liu and Xu 2005) 
may be helpful in considering the flexibility effect to improve the accuracy. 
 
Table 4.1 Comparison of frequency response from stick model and FEA model 

Method f1 f2 f3 f4 f5 f6 
Stick modeling 2.923 2.930 4.230 8.951 8.974 15.037 

FE
A

 
E s

la
b=

 2.8E+10 2.438 2.482 3.555 5.982 6.043 9.619 
2.8E+11 2.807 2.827 4.093 7.377 7.420 12.115 
2.8E+12 2.907 2.916 4.201 8.664 8.681 14.442 
2.8E+13 2.923 2.930 4.243 9.003 9.015 15.108 

 
 
5. CONCLUSIONS  
 
A method is proposed in this study to develop stick models for building structures with mixed walls 
and columns. A macro beam is applied to represent a storey, whose sectional properties are 
determined using beam theory. To capture the torsional and shear effects, the storey stiffness based on 
rigid-floor assumption is used to determine the equivalent torsion constants and shear coefficients. 
Basic formulas are derived for determining the cross-sectional properties, and example analysis is 
conducted to illustrate the proposed method. Although the derivation in this paper focuses on the 
mixed wall-column structures, the proposed method is universal. The method can be applied to 
analysis of structures with pure columns, pure shear walls, or a combination of them. The 
determination of the shear coefficients is important to improve the accuracy in predicting structural 
response. This method can reasonably simulate horizontal and torsional vibration of structures. The 
vertical response close to the vertical wall/column member at a floor elevation can be predicted by the 
analysis. However, the response at a location far away from the vertical members on a floor cannot be 
captured because of the rigid-floor assumption. 
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