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Under seismic loading in a simple URM building with walls connected to the diaphragms, the inertial 
forces from the out-of-plane walls are transferred through the floor diaphragms to the in-plane walls, 
which carry the forces to the foundation.  Clearly, the response of the floor diaphragm in such a load 
resisting system will have a significant influence both on the displacement demands imposed on the 
out-of-plane walls as well as the loads induced on the in-plane walls.  Should stiff, uncracked out-of-
plane walls be spanning vertically between floor diaphragms, the response of such a system could be 
readily modeled using traditional methods.  However, the 2-way interaction between cracked out-of-
plane walls and flexible floor diaphragms is neither intuitively understood nor easily modeled using 
traditional methods. 
 
A study currently under way at the University of British Columbia (UBC) intends to address this issue 
in greater detail through experimental and analytical means. Full-scale shake table tests were carried 
out on URM wall specimens using a testing apparatus which allows for the simulation of flexible 
diaphragm boundary conditions. Three wall specimens were successfully tested at the time of writing. 
This paper describes the setup and preliminary results of the experimental portion of the study, as well 
as additional work planned. 
 
 
2. PREVIOUS STUDIES ON OUT-OF-PLANE WALL BEHAVIOUR WITH FLEXIBLE 
DIAPHRAGMS 
  
Significant previous research on the dynamic out-of-plane response of URM walls began with the tests 
performed by ABK Joint Venture (1981). In this study, 22 wall specimens with different overburden 
loads and height to thickness (h/t) ratios were tested under dynamic loading. The ABK dynamic tests 
were carried out using displacement-controlled actuators at both the top and bottom of the walls.  The 
issue of diaphragm flexibility was addressed by estimating the input motions at the top and bottom of 
walls using a computer model that consisted of a non-linear shear-deformable beam representing the 
diaphragm, and lumped masses on the beam representing the out-of-plane walls.  The calculated 
diaphragm response was then applied to the actuators.  This test design eliminated the possibility for 
observing the effects of interaction between out-of-plane wall rocking and diaphragm flexibility.  
Recommendations from the ABK testing program are reflected in allowable h/t limits specified in 
ASCE 41 Seismic Rehabilitation Standard (ASCE, 2007). The effects of diaphragm flexibility 
stemming from the ABK study are implicitly included in the ASCE allowable h/t limits, but no 
distinction is made in the standard regarding applying the limits to systems with different diaphragm 
flexibilities. 
 
Cohen (2001) and Simsir (2004) conducted ½-scale shake table testing to investigate the influence of 
diaphragm flexibility on the performance of reinforced and unreinforced masonry walls, respectively, 
in one story buildings.  Cohen observed that the overall deformation response of low-rise masonry 
buildings with typical timber diaphragms is dominated by the in-plane response of the diaphragms 
rather than of the in-plane masonry walls.  The wall specimens tested by Simsir were subjected to 
significant overburden loads to represent lower-storey conditions, which has the effect of increasing 
the dynamic stability of the cracked wall. In both of these studies, diaphragm flexibility was only 
simulated at the top of the wall. Meisl et al. (2007) performed full-scale shake table testing of solid 
clay brick URM walls subjected to out-of-plane excitation, with approximately equal input motions at 
the top and bottom of the walls. The tests conducted by Meisl simulated rigid diaphragm conditions, in 
which the top and bottom of the walls were subjected to equal and in-phase displacement demands. 
The critical condition of upper-storey walls connected to flexible diaphragms has yet to be sufficiently 
addressed and their stability and safety in future earthquakes remains poorly quantified. 
  
 
3. EXPERIMENTAL PROGRAM 
 
The following section describes the specimens, apparatus, and protocol of the experimental study. 
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The boundary conditions achieved with this test apparatus are idealized representations of the 
conditions that would be encountered in existing buildings. These conditions were designed to ensure 
that the test results could be modelled accurately in the analytical portion of the study. Examining the 
effect of varying boundary conditions (e.g. partial rotational restraint due to wall-diaphragm 
connections, or arching action in walls due to vertical restraint) was beyond the scope of this study, 
but could be considered as a separate variable in future research. 
 
Instrumentation used in the tests consisted of accelerometers and displacement transducers.  
Horizontal acceleration and displacement were measured at each header course on the wall, as well as 
on the top and bottom carriages, the top of the frame, and the shake table.  Vertical displacement of the 
pins at the top of the wall and the uplift at each side at the base of the wall were measured. Vertical 
displacement at each end of the shake table was also measured to detect any potential uplift. 
 
3.3. Ground motions 
  
Two ground motions were used as input to the shake table, with one motion selected for significant 
long-period spectral response and the other for a dominant short-period spectral response.  The long-
period motion selected was recorded during the 22 February 2011 earthquake in Christchurch, New 
Zealand.  It was recorded at the Christchurch Hospital, and is referred to in this paper as ‘CHHC1’.  
The short-period motion selected was recorded during the 18 October 1989 earthquake in Loma Prieta, 
California.  It was recorded at the Gavilan College in Gilroy, and is referred to in this paper as 
‘NGA0763’.  Response spectra and displacement time histories of the two motions as recorded on the 
shake table are shown in Figures 4 and 5, respectively.   
  

 
 

Figure 4. Response spectra of shake table motions 
 

 
 

Figure 5. Displacement time histories of shake table motions 
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Scale factors are shown relative to the original motion as recorded during the earthquake, and 
reference the magnitude of the displacement time history. It can be observed that the displacement 
control of the shake table results in significant response amplification at the natural frequency of the 
hydraulic system, producing a large response peak at a period of about 0.1 to 0.15 seconds. The effect 
of this amplification was notable for runs in which the carriages were locked out; however, for runs in 
which the carriages were driven through the springs, this amplification was filtered out due to the 
much longer natural period of the spring-carriage-wall system. 
 
3.4. Test protocol 
  
The mortar used in the construction of the test walls (Type O) is of significantly lower strength than 
that used in modern structural masonry. However, in particular the flexural bond strength of walls 
found in early 1900s buildings may be weaker still than that of the test walls. To produce accelerations 
in the test walls sufficient to initiate cracking while the carriages were driven through the springs 
would have required a large scale factor on the CHHC1 run (>100%). Applying such a large ground 
motion to an uncracked wall would likely have caused collapse in the same run that initiated cracking, 
which would have precluded the observation of the response of the cracked wall. It was therefore 
decided not to rely on the cracking resistance of the test walls in assessing their dynamic stability on 
the shake table, but rather to ‘assume’ that the walls would experience cracking at very low levels of 
excitation. The test protocol thus consisted of three stages: (1) uncracked wall, carriages driven 
through springs, CHHC1 motion at several magnitudes, (2) uncracked wall, carriages locked out, 
NGA0763 motion, ramped up until cracking initiated, and (3) cracked wall, carriages driven through 
springs, CHHC1 motion, ramped up until collapse.  For each wall, the motions run and the state of the 
carriages are shown in Table 1. 
 
Table 1. Test protocol 

Stage Motion 
Wall A Wall B Wall C 

Scale 
Carriages 

Scale 
Carriages 

Scale 
Carriages 

Top Bottom Top Bottom Top Bottom 

1 CHHC1 

10% 

Flexible Flexible 

50%
Flexible Locked 

50% 
Flexible Flexible 

30% 70% 80% 
50% 

  
70% 
80% 
100% 

2 NGA0763 
50% 

Locked Locked 
60% Locked Locked 60% 

Locked Locked 
60% 70% 

3 CHHC1 

30% 

Flexible Flexible 

50% 

Flexible Locked 

50% 

Flexible Flexible 

50% 70% 70% 
70% 80% 80% 
80% 90% 90% 
100% 100% 100% 

 
110% 110% 
120% 120% 

 
 
4. RESULTS OF DYNAMIC TESTING 
  
Preliminary results from dynamic tests of walls A, B, and C are presented in the following section. 

  
4.1. Rigid diaphragm response 

 
Typical acceleration profiles along the height of the wall, including at the top and bottom carriages, 
are shown in Figure 6 for uncracked and cracked conditions during the fixed-carriage runs for Wall A. 
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4.2. Flexible diaphragm response 
 

Time histories of Walls A, B, and C for flexible-diaphragm runs at 100% scale are shown in Figure 8. 
In this figure, the table displacement is shown relative to a fixed external reference, while the carriage 
and wall displacements are shown relative to the table (i.e. when these lines are flat, the movement of 
the wall or carriage is in unison with the table).  
 

 

 

 
 

Figure 8. Flexible diaphragm response time histories 
 

 
 

Figure 9. Flexible diaphragm rocking displacement time histories 
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Wall A collapsed at the 100% level of excitation, whereas Walls B and C remained stable. Both 
collapsed at 120%, two runs later. For each wall, the maximum carriage displacements reached during 
runs in which the cracked wall remained stable are shown in Table 2. 
 
Table 2. Peak carriage displacements in stable runs 

Wall 
Peak carriage displacement (mm) 

Bottom Top 
A 180 157 
B 0 206 
C 142 102 

 
The rocking displacement shown in Figure 9 is defined as the difference between the measured 
displacement of the wall at the crack height and the straight-line interpolation between the top and 
bottom of the wall at the same height. In Figure 10, the peak rocking displacement from each run is 
shown relative to the magnitude of the ground motion in that run, with the rocking displacement 
normalized to the wall thickness. The static instability limit can be defined as the point when the 
normalized rocking displacement is equal to 1. 
 

 
 

Figure 10. Peak normalized rocking displacement vs. magnitude of ground motion 
 
Walls which were connected to flexible supports at both the top and bottom (A and C) exhibited 
significant rocking displacement in runs prior to the collapse run.  In contrast, Wall B, which was 
connected to a fixed base and a flexible top support, exhibited very limited rocking in all runs prior to 
the collapse run. This is a notable difference from the observations of Meisl et al. (2007). 
 

 
 

Figure 11. ASCE 41 stability limits & experimental collapse observations 
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In Figure 11, the observed collapse points and wall slenderness ratios of the test specimens are shown 
on a plot of the allowable slenderness ratios stipulated for out-of-plane URM walls in ASCE 41. At 
present, the allowable slenderness ratios are independent of diaphragm flexibility, and are specified as 
a function of Sa(1.0sec). For consistency, the spectral acceleration of the applied ground motions in the 
test were also plotted at a period of 1.0 second, despite this not being the natural period of the wall-
spring-carriage system in the tests. The authors intend to examine the effect of evaluating wall stability 
with respect to this natural diaphragm period in the upcoming analytical portion of the study. 
 
 
4. CONCLUSIONS AND UPCOMING WORK 
  
While it is too early in the study to reach definite conclusions, the preliminary results suggest that 
ASCE41 limits may be conservative with respect to assessing wall stability connected to flexible 
diaphragms. The authors intend to evaluate this suggestion comprehensively by carrying out a 
parametric study using a rigid-body rocking model previously developed by Sharif et al. (2007) and 
expanded by Penner et al. (2011). 
 
The second phase of the experimental study will consist of shake table testing of retrofitted URM wall 
specimens. Two additional specimens of the same size as walls A and B were constructed in April 
2012 for this purpose. Potential retrofits under consideration include steel strong-backs, near-surface 
mounted CFRP, FRP wrap, and/or a combination of these systems. This phase of the study will aim to 
identify retrofit solutions that are as economical and aesthetically unobtrusive as possible while 
providing collapse-prevention performance in historic buildings in areas of high seismic hazard. 
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