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SUMMARY:  

Optimum parameters of Tuned Mass Dampers (TMD) are determined in this paper to minimize dynamic 

response of a multi-storied building system. The response of the structural system is simulated under lateral 

excitation. To optimize dynamic parameters of the TMD system for minimum top deflection of the structure, a 

numerical global optimization algorithm called Evolutionary Operation (EVOP) is used. This optimization tool 

possesses high probability of locating global minimum efficiently. The study proposes a design methodology of 
a TMD system based on EVOP algorithm. Also a comparison has been made with two other optimization 

approaches. The study shows the effectiveness of present approach in optimization leading to a more feasible 

selection of TMD parameters. 
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1. INTRODUCTION 

 

In the history of structural engineering a number of vibration control technique have been proposed 

and adopted so far to reduce structural response due to lateral excitations. Methodologies developed 
and used in order to improve structural performance and minimize structural damage mainly are 

vibration isolation, control of excitation forces, vibration absorber etc. In case of vibration absorbers 

Tuned Mass Damper (TMD), Active Mass Damper (AMD), Hybrid Mass Damper (HBD) has been 
studied to control the behaviour of tall structure subjected to excitations. Among these systems still 

TMD is popular because of its easy principle and several successful applications in real practice. A 

TMD is a system with a tuned mass, spring and damping elements which assists to increase the 
damping of the primary structure and hence aids in reducing vibration and keeping it within the 

desirable limit. 

 

Frahm (1909) first proposed the basic form of TMD which did not possess any damping property by 
itself. So the effectiveness of the system was dependent upon the matching of its natural frequency and 

that of the excitation force. After that Ormondroyd and Den Hartog (1928) introduced internal 

damping in TMD. Optimum choices of damper parameters were not considered until Den Hartog 
(1947) proposed closed form expressions of frequency ratio and damping ratio of the TMD for an 

undamped single degree of freedom system. Later damping in the main system was included through 

several researches performed by Bishop and Welboum (1952), Snowdon (1959), Falcon et al. (1967), 

Ioi and Ikeda (1978). With time a number of studies and their extensions were made by Warburton and 
Ayorinde (1980), Thompson (1981), Warburton (1982), Villaverde et al. (1985, 1993 and 1995), 

Sadek et al. (1997) to obtain optimum TMD parameters considering different conditions. Rana and 

Soong (1998) simplified the design of TMD to control a single mode of a MDOF system. In addition 
they also inspected the prospect of controlling multiple structural modes with multi-tuned mass 

dampers (MTMD). Lin et al. (2001) applied an extended random decrement method to reduce 

dynamic responses of a MDOF system subjected to seismic load. Lee et al. (2006) proposed an 
optimal design theory for buildings associated with TMDs at different storey level and power spectral 

density (PSD) function of environmental disturbances. Optimal design parameters were expressed in 

terms of damping coefficients and spring constants through minimization of performance index of 



structural response. A numerical approach was also developed to search optimal design parameters of 

MTMDs. Bakre and Jangid (2007) developed explicit mathematic expressions for optimum TMD 

parameters using numerical searching technique. Rudinger (2007) included nonlinear viscous damping 

elements to TMD and analyzed the effect. Unlike previous studies related to TMD optimization where 
TMD mass ratio was a preselected parameter, Marano et al. (2010) optimized TMD mass ratio along 

with other parameters. 

 
Metaheuristic methods like genetic algorithm (GA), particle swarm, simulated annealing, big bang big 

crunch were applied to solve different optimization problems. A wide application of genetic algorithm 

for tuning of TMD parameters was made in studies of Hadi and Arfiadi (1998), Singh et al. (2002), 
Desu et al. (2006), Pourzeynali et al. (2007). Leung et al. (2008 and 2009) used particle swarm 

optimization technique of tuned mass dampers. A global optimization algorithm EVOP developed by 

Ghani (1989) was used by Ahsan et al. (2011) to optimize the design of simply supported, post-

tensioned, prestressed concrete I-girder bridge and succeeded in locating the global minimum. This 
optimization tool is capable of locating global minimum directly with high probability and without any 

requirement of information related to gradient or sub-gradient of objective function. 

 
In the present study the focus is to explore this global optimization tool EVOP in order to obtain the 

optimum mass, stiffness and damping value of single TMD attached to top of a MDOF structure 

system and compare its effectiveness with other optimization approaches. The objective function 
selected for present case is minimization of the top deflection of primary structure. 

 

2. EQUATION OF MOTION 

 
Although present paper is focused on an MDOF structural system associated with single TMD on top, 

an approach has been developed to find the optimum parameters of TMDs installed in different story 

level of a multi-storied building for minimum top deflection caused by lateral excitation. The entire 
optimization problem has been formulated by developing a program using C++ language. A general 

equation of motion for any building with n number of story associated with m number of TMDs in 

different story level is used in developing the program for structural response minimization using 

EVOP. The equation of motion of the primary system is stated as follows. 
 

MiX i + Ki Xi − Xi+1 + Ki−1 Xi − Xi−1 + Ci X i − X i+1 + Ci−1 X i − X i−1 +

Kj 𝑋𝑖 − 𝑋𝑗  + 𝐶𝑗  𝑋 𝑖 − 𝑋 𝑗 = −𝑀𝑖𝑢 𝑔  (2.1) 

 

The equation of motion of TMD is given below. 
 

MjX j + Kj Xj − Xi + 𝐶𝑗  𝑋 𝑗 − 𝑋 𝑖 = −𝑀𝑗𝑢 𝑔  (2.2) 

 

Where, i=1, 2,.....n and j=1, 2,.....m. In the above equation of motions M, K, C denotes mass, stiffness 

and damping respectively of n
th
 story in case of structure and of m

th
 TMD for dampers. X represents 

the absolute lateral displacement with respect to ground. 𝑋  is single derivative of displacement which 

is velocity and 𝑋  is double derivative whic is acceleration. 𝑢 𝑔  is the ground acceleration due to lateral 

excitation. 

 

 

3. EVOLUTIONARY OPERATION (EVOP) ALGORITHM 
 

In order to optimize the TMD parameters for achieving minimum response of an MDOF system, 

extensive evaluation of dynamic response is required which also have to satisfy the limit of variables 
and other constraints. For the present problem the variables used are of continuous type. This highly 

complex problem of dynamics with multiple local minima needs a global optimization tool for 

searching the global minimum. The current problem has been constructed to solve the optimization 
problem using EVOP. This global optimization tool has been assessed for optimization of numerous 



test problems and has succeeded in locating global minimum directly. It is capable of minimizing an 

objective function without asking information on gradient or sub-gradient. It is facilitated with 

automatic restarts to check whether the previously obtained minimum is the global minimum. 

 
The algorithm of EVOP has been developed to minimize a defined objective function. The numbers of 

independent variables involved in the objective function are subjected to explicit constraints with 

specific upper and lower limit of each constraint. If any explicit constraint causes the vector-space 
non-convex it is then set into the group of implicit constraints with fixed upper and lower limit of each 

of them. These limits are either constant values or function of independent variables. 

 
The algorithm works and progresses through six fundamental process which are explained clearly in 

details by Ghani (1989). The processes are generation of a 'complex', selection of a 'complex' vertex 

for penalization, testing for collapse of a 'complex', dealing with a collapsed 'complex', movement of a 

'complex' and convergence tests. The algorithm of EVOP is presented in Figure 3.1. 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

Figure 3.1 Algorithm of EVOP (after Rana, 2010) 

 

For the present case, the entire problem has been constructed by identifying the independent variables, 

setting objective function to be minimized along with selecting the explicit and implicit constraints to 
be satisfied. After simulating the related expressions for dynamic analysis of current structural system 

chosen for optimization, a feasible starting point and control parameters required for EVOP has been 

selected and then linked the formulated problem with EVOP algorithm to perform the ultimate 
optimization operation. The systematic flow of the formulation steps of selected optimization problem 

and linking it with EVOP is illustrated in Figure 3.2.  

 
 

No No 

Yes 

Testing for collapse of a 

'complex', and dealing with a 

collapsed 'complex' 

Convergence test 

Movement of a 'complex' 

Generation of a 'complex' 

Selection of a 'complex' 

vertex for penalization 

Penalized 

Vertex 

An initial feasible vertex and 
EVOP control parameters    

Limit of 
function 
evaluations 
exceed? 

Stop 

 

Optimum 
Solution 

 

Yes 

Converged? 



 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

Figure 3.2 Problem formulation flowchart 

 

EVOP control parameters and input parameters used for the present study are shown in the Table 3.1. 

 
Table 3.1. EVOP control parameters and input parameters 

EVOP Control 

Parameters 
Default values Range 

Input Parameters with 

values 

Reflection coefficient, α 1.6 1.0 to 2.0 Number of complex 

vertices, K = 6 

Contraction coefficient, β 0.5 0 to 1.0 Maximum number of 

times the three functions 

can be collectively called, 

LIMIT = 100000 

Expansion coefficient, γ  2.0 >1.0  

Convergence parameter, 

Φ 

10-13 10-16 to 10-8 Dimension of the design 

variable space, N = 3 

 
 

4. APPLICATION OF EVOP IN TMD OPTIMIZATION 

 

To explore EVOP for the optimization of TMD parameters, a ten story shear building was chosen 
from the example of Hadi and Arfiadi (1998). The building has uniform mass of 360 t, stiffness of 650 

MN/m, and damping coefficient of 6.2 MNs/m at each story. For the purpose of calculating inter-story 

drift, height of each story was assumed as 10.0m. To analyze the problem using EVOP the objective 
function is selected as top deflection of structure. The structural response has been simulated under 

lateral excitation and solved using central difference method. The independent variables identified are 

mass, stiffness and damping values of TMD. In the expressions written for constraints, the explicit 
constraints are defined as mass, stiffness and damping value of TMD and implicit constraint is set to 

maximum interstory drift. The selected values for initial feasible vertex and limit of constraints are 

presented in the following Table 4.1. 
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Table 4.1. Initial feasible values of independent variable and limits of constraints 

 Initial feasible value Upper limit Lower limit 

Mass (t) 

(Explicit Constraint) 

105 108  

(3% of total story mass of 

primary structure) 

0 

Stiffness (kN/m) 

(Explicit Constraint) 

3750 5000 0 

Damping (kNs/m) 

(Explicit Constraint) 

151.5 200 0 

Intersotry Drift (m) 

(Implicit Constraint) 

- 0.1 0 

 

After setting the initial values and constraint limits for the problem, the maximum story displacement 
with respect to ground were calculated by the developed program due to El Centro (1940) NS 

earthquake and the obtained maximum top displacement was defined as the objective function for 

minimization. Finally optimum TMD parameters were obtained for minimum top displacement.  
 

To evaluate the effectiveness of present approach of optimization, results obtained using EVOP were 

compared to those obtained using two different approaches adopted by Hadi and Arfiadi (1998) and 

Lee et al. (2006). In case of optimizing dynamic parameters of TMD, Hadi and Arfiadi (1998) and Lee 
et al. (2006) only considered stiffness and damping of TMD. But in current methodology optimum 

value of TMD mass has also been searched along with stiffness and damping while performing the 

optimization process. 
 

The comparison among optimum TMD parameters and maximum story displacements with respect to 

ground obtained using three optimization approaches are enlisted in Table 4.2 and Table 4.3 

respectively. 
 
Table 4.2. Comparison among TMD parameters for different optimization approaches 

Optimum Parameters Without TMD With TMD (GA) With TMD (Lee et al.) With TMD (EVOP) 

Mass (t) - 108  108 107.995 

Stiffness (kN/m) - 3750 4126.93 3346.406 

Damping (kNs/m) - 151.5 271.79 66.024 

 
Table 4.3. Comparison among story displacement with respect to ground for different optimization approaches 

Dispalcement  

(m) 

Without 

TMD 

With 

TMD 
(GA) 

With 

TMD 
(Lee et 

al.) 

With TMD 

(EVOP) 

%Reduction 

(GA) 

%Reduction 

(Lee et al.) 

%Reduction 

(EVOP) 

Storey 1 0.031 .019 0.02 0.018728 38.71 35.48 39.58 

Storey 2 0.06 .037 0.039 0.036557 38.33 35.00 39.07 

Storey 3 .087 .058 0.057 0.052977 33.33 34.48 39.11 

Storey 4 .112 .068 0.073 0.067714 39.29 34.82 39.54 

Storey 5 .133 .082 0.087 0.081631 38.35 34.59 38.62 

Storey 6 .151 .094 0.099 0.093736 37.75 34.44 37.92 

Storey 7 .166 .104 0.108 0.103761 37.35 34.94 37.49 

Storey 8 .177 .113 0.117 0.111502 36.16 33.90 37.00 

Storey 9 .184 .119 0.123 0.116998 35.33 33.15 36.41 

Storey 10 .188 .122 0.126 0.119682 35.11 32.98 36.34 

Storey TMD - .358 0.282 0.413981 - - - 

 

From the above comparison it can be observed that, using EVOP the structural response which is 

taken as story displacement has been minimized more efficiently with the accomplishment of better 
and more economic choice of selected TMD parameters. Optimum parameters of TMD obtained using 

EVOP are found to be smaller than those obtained by Hadi & Arfiadi (1998) using GA and Lee et al. 

(2006). The percentage of reduction of displacement is also higher compared to other two approaches 

selected for comparison. Maximum inter-story drift at the point of optimum value is found to be 



0.006m. However allowable limit of inter-story drift can be set depending on the design consideration 

of structural system. 

 

 

5. CONCLUSION  

 

In current approach, an attempt has been made to adopt a global optimization algorithm EVOP for 
structural control under seismic excitation. In this regard a computer program has been developed to 

construct the optimization problem. A ten story structure associated with TMD on roof was selected 

for optimization process and top displacement was minimized for El Centro (1940) NS earthquake. 
Afterwards a comparison with the results obtained from two different approaches was made to prove 

the effectiveness and reliability of EVOP. A higher percentage of structural response reduction was 

achieved with a choice of smaller mass, stiffness and damping of TMD with the application of EVOP. 

From the study it has been established that the selected optimization technique EVOP has the high 
probability of locating global minimum. Moreover, by observing the potential of EVOP in locating the 

global minimum effectively and considering the feasibility aspect, it can be concluded that EVOP is 

effective in optimizing vibration control problems.  
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