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SUMMARY:  
From more than 54,000 earthquakes around Taiwan, the magnitude cumulative probability is found in a good fit 
to the hyperbolic function, which has been widely used in modelling nonlinear relationships in some engineering 
analysis, such as soil stress-strain behaviour developed into a well-known hyperbolic soil constitutive model. 
The details of this application to the seismicity around Taiwan are provided in this paper. The result shows that 
both new and conventional approaches suggest equally satisfactory fit to the observed magnitude distribution 
around Taiwan. As a result, the new method provides an alternative to model the earthquake magnitude 
distribution when it is needed in seismic hazard analysis.      
 
Keywords: magnitude probability function, hyperbolic model, Taiwan 
 
 
1. INTRODUCTION 
 
Probabilistic seismic hazard analysis (PSHA) has been becoming the prescribed approach in 
site-specific earthquake resistant design for critical structures (USNRC, 2007; IAEA, 2002). The 
essentials of PSHA are to estimate mean rate (e.g., 10-4 / year) of design motion from seismicity data 
and geological evidences in a probabilistic framework, in which the uncertainty of earthquake 
magnitude, source-to-site and ground motion attenuation are accounted for. For developing the 
magnitude distribution function the conditional-probability approach with the earthquake recurrence 
parameters (known as a-value and b-value) developed by McGuire and Arabasz (1990) are commonly 
used. Basically, the probability for certain magnitude is the ratio of the frequency of this earthquake to 
total earthquakes considered, expressed as follows: 
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where m0 and mmax are threshold magnitude and maximum magnitude; N denotes the number. Since 
earthquake rate can be modeled by the Gutenberg-Richter law (1944): 
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Eqn. 1.1 becomes: 
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Apparently, the cumulative magnitude probability FM can be extended as the following Eqn. 1.4. 
Such a magnitude cumulative function is governed by b-value. 
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2. SEISMICITY AROUND TAIWAN 

Fig. 2.1 displays the spatial distribution of declustered earthquakes from 1973 to 2009 around Taiwan, 
and Fig. 2.2 shows the observed theoretical cumulative probability with m0 and mmax equal to 5.0 and 
8.0, respectively. Note that this earthquake catalog has been used for earthquake statistics studies 
(Wang et al., 2011), and that its characteristics, such as incompleteness, have been discussed. Also, m0 
5.0 is considered the magnitude threshold possibly causing damage on engineered structures, and mmax 
8.0 is an estimate based on the historic seismicity. 
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Figure 2.1. The spatial distribution of more than 54,000 earthquakes around Taiwan since 1973 (Wang et al., 
2011) 

Accordingly, Fig. 2.3 shows the Gutenberg-Richter relationship for this seismicity around Taiwan, 
with a-value and b-value equal to 5.83 and 0.92, respectively. From the two parameters, Fig. 2.4 
shows the expected magnitude cumulative probability through Eqn. 1.4.        



5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.0

0.2

0.4

0.6

0.8

1.0

54,235 earthquakes around Taiwan 
during 1973 to 2009

Maximum moment magnitude is 7.93 

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty
Earthquake Magnitude  

Figure 2.2. Observed magnitude cumulative probability for the seismicity around Taiwan 
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Figure 2.3. The Gutenberg-Richter relationship for the seismicity around Taiwan 
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Figure 2.4. The expected magnitude cumulative probability through the conditional probability method 

 

3. HYPERBOLIC FUNCTION AND PARAMETER CALIBRATION 

Hyperbolic functions have been utilized in correlating two variables in engineering. The well-known 



Duncan & Chang soil stress-strain model (Duncan and Chang, 1970) was developed on the basis of 
this type of nonlinear functions. Under the hyperbolic form, the relationship between magnitude 
probability function (fM) and earthquake magnitude can be expressed as follows:   
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Note that c and d are function parameters and m0 is a constant. Therefore, the derivative of fM against 
m becomes:   
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Since Mf
m

∂
∂

presents the slope of the curve at M = m, when M approaches m0, Mf
m

∂
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is equal to 1/c. As a 

result, parameter c can be calibrated from the initial slope (Sint) of the curve as follows: 
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Substituting Eqn. 3.3 into Eqn. 3.1, parameter d can be expressed as follows: 
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Using the boundary condition, fM = 1 at M = mmax, parameter b becomes: 
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Through these relationships, parameters c and d can be calibrated from the observed cumulative 
probability curve shown in Fig. 2.2. For this magnitude distribution, c and d are 0.25 and 0.84, 
respectively. Accordingly, the cumulative magnitude probability through the hyperbolic relationship in 
Eqn. 3.1 is shown in Fig. 3.5.   

4. DISCUSSIONS AND CONCLUSIONS 

Fig. 4.6 shows the comparison of the three cumulative probabilities. Both models are equally 
providing a good fit to this observed seismicity around Taiwan, with the hyperbolic function slightly 
over-estimating and under-estimating the cumulative probabilities in low and high magnitude ranges.  
In contrast, the conventional prediction over-estimates and under-estimates those in high and low 
magnitude ranges.   
 
The earthquake magnitude cumulative function is found to follow a hyperbolic function, which has 
been widely used in modeling nonlinear relationships in engineering analysis. Through the hyperbolic 
relationship, the two parameters for the seismicity around Taiwan are calibrated as 0.25 and 0.84, 
which can provide a good fit for the more than 54,000 earthquakes. The new method is considered 
useful for seismic hazard analysis in need of magnitude probability distribution, providing an 
alternative to the conventional conditional-probability approach.                    
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Figure 3.5. The hyperbolic prediction on the magnitude cumulative probability calibrated from the observed 
function 
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Figure 4.6. The comparison of the three earthquake magnitude functions; both new and conventional 
methods suggest equally satisfactory fit to the observation 
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