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SUMMARY: 

Fiber reinforced polymer (FRP) reinforcing bars have been used in concrete structures as alternate to 

conventional steel reinforcement, in order to overcome corrosion problems. However, due to the linear behavior 

of the commonly used reinforcing fibers, they are not considered in structures which require ductility and 
damping characteristics. The use of superelastic shape memory alloy (SMA) fibers with their nonlinear-elastic 

behavior as reinforcement in the composite could potentially provide solution for this problem. Small diameter 

SMA wires are coupled with polymer matrix to produce SMA-FRP composite which is sought in this research as 

reinforcing bars. SMA-FRP bars are sought in this study to enhance the seismic performance of reinforced 

concrete (RC) moment resisting frames (MRFs) in terms of reducing their residual inter-storey drifts while still 

maintaining the elastic characteristics associated with conventional FRP. Response of this suggested composite 

reinforcement has been investigated experimentally by first manufacturing and then performing uni-axial tests in 

the laboratory. Analytical material models are developed for the composite materials based on experimental 

results. Three storey one bay and six storey two bay RC MRF prototype structures are designed with steel, SMA-

FRP and glass-FRP reinforcement. Incremental dynamic analysis technique is used to investigate the behaviors 

of the two frames with the three different reinforcement types under a suite of ground motion records. It is found 
that the frames with SMA-FRP composite reinforcement exhibit higher performance levels including lower 

residual inter-storey drifts, high energy dissipation and thus lower damage, which is of essence for structures in 

high seismic zones. 
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1. INTRODUCTION 

  
Although FRP offers many benefits over steel reinforcement, it induces unsatisfactory structural 

ductility and serviceability due to its elastic brittle behavior, limited rupture strains, and lower 

modulus of elasticity. The near linear elastic nature of FRP leads to very limited energy dissipation 

capability in FRP reinforced concrete (RC) structures. Lack of ductility and energy dissipation has 

restricted FRPs’ use in seismic applications (Harris et al. 1998). To address the issue of ductility and 

energy dissipation in FRP RC structures, this study investigated the use of a new type of composite, 

known as shape memory alloy-FRP (SMA-FRP) as reinforcement for RC structures. SMA-FRP 

reinforcing bar comprises polymeric resin reinforced with small diameter superelastic SMA fibers. 

The typical flag shape hysteresis associated with superelastic SMAs is a direct result of a reversible 

stress-induced phase transformation between austenite and martensite phases (See fig. 1(a)). The 

nonlinear, yet pseudo-elastic behavior typical of SMA fibers (Naito et al. 2001) will allow SMA-FRP 

composite reinforcement to exhibit hysteretic and ductile behavior with minimal damage to the RC 

structure. This is not likely in steel reinforcement, which exhibit ductility through permanent damage 

to the steel and concrete which often yields significant residual (permanent) deformations in the 

structure. Thus, SMA composite reinforcement can both capture the non-corrosive properties typical 

of FRP reinforcement and at the same time exhibit the ductility similar to steel with negligible residual 

drifts as achieved in FRP.  

  

SMAs have been known for decades, but they have not been used much in the building industry until 

recently (Janke et al. 2005). The superelasticity and shape memory phenomena typical of SMAs 



  

encouraged many researchers to study the application of SMAs in civil structures (e.g. DesRoches. et 

al. 2004, Nehdi et al. 2009, Shin and Andrawes 2010, among others). Among the researches that are 

relevant to this present study are the studies by Saiidi et al. (2007) and Nehdi et al. (2009), who 

investigated the use of SMAs in the plastic hinge zone of a RC beam. Unlike this study, these 

researchers used large diameter rods made of NiTi SMAs as reinforcement. The use of large diameter 

SMA bars reduces the hysteretic area of the SMA (Saiidi et al. 2007) and thus impacts its ability to 

dissipate energy compared to small diameter wires. Moreover, manufacturing large diameter SMA 

rods is extremely expensive compared to small diameter wires, which makes use of large SMA bars in 

real applications cost-prohibitive. To overcome these problems, the SMA-FRP hybrid reinforcing bars 

studied in this paper comprises small diameter superelastic NiTi SMA wires with or without FRP 

bonded together using a polymeric resin matrix, as shown in fig.1(b). The primary focus of the study is 

to explore the use of SMA-FRP hybrid bars as reinforcement in RC moment resisting frame (MRF) 

structures subjected to earthquakes. These composite reinforcements were first manufactured and 

tested in the laboratory. The performance of MRF, which were first designed and then subjected to 

incremental seismic analyses was analytically compared between use of steel, conventional GFRP and 

SMA-FRP reinforcement types. 

 

 

 

 

 

 

 

 
Figure 1.  Schematic drawing of (a) Stress-strain hysteresis of superelastic SMA. 

(b) SMA-FRP hybrid composite rebar cross-section.  

 

 

2. EXPERIMENTAL MANUFACTURING AND TESTING 

 

2.1. Material Selection 

 
The host material selected for use in manufacturing of epoxy resin with high elongation properties. 

The resin system selected for manufacturing composite are suitable for use in high performance 

applications such as coatings, adhesives, civil engineering, electronic and electrical insulation. For 

reinforcing material, S-glass FRP was selected for use in hybrid composite because of their improved 
stiffness and elongation properties over carbon and aramid FRP. Finally Nickel Titanium (NiTi) SMA 

wires with diameter of 500µm were used as primary reinforcement in addition to S-glass fibers in the 

composite coupon specimens. Several studies (Gong et al., 2002) have shown decrease in the forward 

transformation stress (loading plateau) and decrease in the residual strain (increase in residual 

elongation / displacement) with continued cycling. Once the SMA wires were trained to give stable 

properties, they were embedded in resin matrix to produce two composite specimens with varying 

reinforcement ratio. Fig. 2 shows methodology utilized for preparation of SMA-FRP composite 



  

specimen. The HSMA-3 and HSMA-7 specimens had 3 & 7 SMA wires with reinforcement ratio of 

8.46 and 20.3%, respectively. Another composite specimen (SFHC-3) with S-glass fiber in addition to 

SMA wires was manufactured and tested. 

 

 
Figure 2.  Methodology of preparation of SMA embedded composite specimen. 

 

2.2. Uniaxial Cyclic Testing 

 
For the purpose of testing all the dog bone specimens and for SMA wire training, a 97 kN uniaxial 

servo-controlled hydraulic frame was used. The frame was attached with hydraulic pump, actuator, 

load cell and mechanical grips. A uniaxial tensile loading and unloading protocol was developed in 

order to find the tensile properties of the material and composite. In the loading protocol, both loading 

and unloading was governed by strain control, based off of values of elongation being read by 

extensometer with constant strain rate of 0.254 mm/min (0.0083 Hz). The testing protocol was 

programmed to have each tensile cycle to be 1% strain increment. Results from quasi-static tensile test 

of four specimens, namely M10 (pure resin), HSMA-3, HSMA-7 (Only SMA wires were used as 

reinforcement) and SFHC (both SMA and GFRP was used as reinforcing material) is shown in fig. 3. 
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Figure 3. Cycle wises comparison of stress strain curves of HSMA-3, HSMA-7 and M10 resin and SFHC-3 

specimens (a) 1% strain cycle (b) 2% strain (c) 3% strain (d) 4% strain 

 

 

3. ANALYTICAL MODELING 

 

3.1. Prototype MRF 
 

A 2-D three storey one bay (3S1B) and six storey two bays (6S2B), reinforced concrete MRF were 

designed to investigate the behavior of steel, GFRP and SMA-FRP composite reinforcement. Finite 

element program, OpenSees (Mazzoni et al. 2009) which has been specifically designed for seismic 

analysis and earthquake simulations, was utilized to perform the inelastic analyses on the MRF 

structures considered in this study. Fiber section approach and nonlinear beam-column elements were 

utilized to define the cross-section and the elements, respectively. Cross-sections are modeled by 

defining geometric and material properties, while fibers form the basis of distributed plasticity models. 

The cross section is discretized into fibers, which allows the section to be further divided into small 

areas with different constitutive models. In order to restrict the cost of material associated with use of 

NiTi in SMA-FRP composite, the reinforcing composite is only provided in the plastic hinge zones of 

MRF where high inelasticity is expected to accumulate. Generally, the length of plastic hinge varies 

between 1.2h to 2h, where h is the depth of the section (Paulay & Priestley, 1992). Mechanical 

couplers can be used to tie the two different types of reinforcement after their cutoff points outside the 

plastic hinge zone, which for this study was kept constant to be 1.5h. Also in this study it is assumed 

that no slippage occurs at the mechanical coupler and a perfect bond exists between all reinforcement 
types and concrete material. Fig. 4 shows analytical modeling technique used in this study. 

 



  

 
Figure 4. Analytical modeling technique utilized in OpenSees.  

 

3.2. Material Properties and Modeling 
 

Uniaxial material models have been defined in OpenSees to capture the constitutive behavior of 

concrete and reinforcement materials. Concrete02 model, which considers concrete’s tensile strength, 

was selected to represent the concrete behavior. The constitutive behavior of confined concrete was 
considered by using the model developed by Mander et al. (1988). For unconfined concrete, a 

compressive strength of 30 MPa and a strain of 0.002 mm/mm corresponding to peak compressive 

strength were assumed. Base model for confinement was developed for steel reinforcement and was 

then kept the same for the sake of consistency and comparison with SMA-FRP and GFRP sections. 

Three different reinforcing materials were used in this study namely, steel, SMA-FRP, and GFRP. The 

steel behavior was described using Steel02 model predefined in OpenSees, which is based on the 

Giuffre-Menegotto-Pinto model with isotropic strain hardening (Menegotto and Pinto 1973). GFRP 

and epoxy resin were modeled using elastic and elastic perfectly plastic material models, respectively, 

while SMA material was modeled using flag shape ‘SMA’ uniaxial material, predefined in OpenSees. 

For analytical modeling, it was assumed that both SMA-FRP and GFRP composite reinforcement 

constitutes of 65% fiber and 35% resin in terms of volumetric ratio. Parallel material command was 

used to join the epoxy and SMA / FRP material models, in which the strains are equal while stresses 

and stiffness’s are additive. Grade 60 steel with modulus of elasticity of 200 GPa was used to design 

the structure. For GFRP, rupture strain of 0.034 mm/mm and modulus of elasticity of 65 GPa was 

used.  Transformation stresses values were used for NiTi, austenite to martensite start stress, σAMS = 

550 MPa, austenite to martensite finish stress, σAMF = 560 MPa, martensite to austenite start stress, 

σMAS = 145 MPa, martensite to austenite finish stress, σMAF = 138 MPa. The modulus of elasticity of 

the NiTi SMA fiber was assumed to be 69 GPa. Experimental results were used to calibrate the 

analytical models used in this study which were capable of predicting closely, the initial stiffness, 

rupture stress and strain, and the post-rupture behavior, achieved from experimental results.  

 

 

4. DESIGN OF PROTOTYPE MOMENT RESISTING FRAMES 
 

Reinforced concrete MRFs (3S1B & 6S2B) were designed to investigate the behavior of steel, GFRP 

and SMA-FRP composite reinforcement. Initially, steel reinforcement was used to design the frame, as 

all the guidelines for design are available for concrete members reinforced with steel rebars. Later, 

steel reinforcement was replaced by SMA-FRP and GFRP composite rebars. In order to restrict the 

cost of material associated with use of NiTi in SMA composite, the reinforcing composite is only 

provided in the plastic hinge zones of MRF where high inelasticity is expected. Loads were considered 



  

on the structure assuming it to be an office building with values of loads based on American Society of 

Civil Engineers (ASCE-7) standard guidelines (ASCE 2005). International Building Code (IBC) (IBC 

2006) was used to compute the base shear for the structure. Equivalent static force (ESF) procedure, as 

described in IBC-2006 and ASCE 7 was used to distribute the design base shear along the height of 

the structure. Structural analysis was performed to obtain the design moment and shear with the 

special seismic load combination allowed by IBC-2006. An iterative process was carried out next 

using the design response spectrum to determine the area of the SMA-FRP and GFRP reinforcement 

using moment curvature analyses. Based on M-φ curves, capacity of the sections was matched to the 

desired capacity (demand) and reinforcement ratios were determined. M-φ analysis revealed that the 

steel cross section has been designed for higher moment as compared to SMA-FRP and GFRP cross 

sections due to higher stiffness. Due to this inherent variation in stiffness of the three reinforcements, 

the frames were not designed for same seismic force levels. ACI code was used to ensure that the 

designed section is not critical in shear. Same cross section was used for the entire length of beam and 

column in all the floors. Beam cross section was 300mm x 500mm, while the square column had a 

dimension of 400 mm. The procedure for determining the reinforcement ratio of SMA-FRP and GFRP 

is explained in the flow chart shown in fig. 5.  

 
Figure 5.  Design procedure for frame with SMA-FRP and GFRP composites. 

  

5. INCREMENTAL DYNAMIC ANALYSIS 
 
Incremental dynamic analysis (IDA) method was used in this study which involves subjecting a 

structural model to one or more ground motion records. Each record is then scaled to multiple levels 

of intensity, thus producing one or more load displacement curves (Vamvatsikos and Cornell, 2001). 

IDA curves for steel, SMA-FRP and GFRP frames were developed to find the corresponding PGA 

which would cause the crushing of core concrete in the column or rupture of reinforcement whichever 

is earlier. Four ground motion records were used to conduct nonlinear time history analysis on the 

MRFs. These selected natural earthquake records and their characteristics are shown in table 1. The 

four ground motion records were selected to have variation in predominant period as well as the 

frequency content of the record, in order to assess variation in response of MRFs. The ground motion 

records represent a sample of earthquake with low, medium and high frequency content. This variation 

was considered critical in evaluating response of the 3S1B MRF under various seismic hazard 

parameters. 

 
Table 1. Characteristics of selected ground motions. 

Earthquake Station PGA(g) Effective Duration Predominant Period 

2005 Kashmir Abbotabad 0.236 60.01 sec 0.85 sec 

1994 Northridge 24278 Castaic 0.516 29.97 sec 0.55 sec 

1978 Tabas 9101 Tabas 0.835 32.84 sec 0.24 sec 

1999 Kocaeli Kocaeli 0.219 29.995  sec 0.31 sec 

 

5.1 Maximum Inter-Storey Drift Ratio 
 

From the analyses results, IDA curves were generated for 3S1B, which are a plot between maximum 

inter-story drift (ID-%) and the PGA (g) for each record as shown in fig. 6. Fig. 6(a) which is the 



  

response of 3S1B subjected to Kashmir ground motion shows that for the lower value of PGA, steel-

reinforced frame shows less ID values as compared to both SMA-FRP and GFRP reinforced frames. 

This could be attributed to lower stiffness of both SMA-FRP and GFRP material as compared to steel. 

However, after a PGA of about 0.6g, SMA-FRP-reinforced frame exhibited less ID values as 

compared to frame with steel reinforcement. At a PGA value of 1.2g, SMA-FRP frame exhibited less 

ID by 7%, despite having 60% less initial modulus of elasticity as compared to steel. On the other 

hand GFRP-reinforced frame experienced much higher ID as much as 21% as compared to steel and 

SMA-GFRP frame despite the fact that it was able to sustain lesser PGA intensity before collapse. Fig. 

6(b) which is the response of frame subjected to Northridge ground motion also exhibits high ID 

values for GFRP-reinforced frame. However, for this record the steel and SMA-FRP-reinforced 

frames showed comparable ID values at same PGA. In this case GFRP-reinforced frame exhibited 

much higher ID as compared to both steel and SMA-FRP. Fig. 6(c) is the response of frames subjected 

to Tabas ground record. The results show that the steel-reinforced frame experienced an ID of 4.16% 

at a PGA of 2.42g when core concrete in columns started to experience crushing. However SMA-FRP-

reinforced frame experienced maximum ID of 4.2% before reaching collapse at a PGA of 2.08g. 

GFRP-reinforced frame, which experienced ID of 4.8%, suffered collapse at a lower PGA of 1.54g 

due to rupture of GFRP within plastic hinge zone. Similar results were observed for the response of 

3S1B frame subjected to Kocaeli ground motion record. Maximum drifts experienced by steel, SMA-

FRP and GFRP reinforced frames were 3.24%, 4.16% and 4.8%, respectively, before collapse. Higher 

IDs in GFRP frames are attributed to lower material stiffness and sudden rupture of GFRP in beams. 

By running IDA technique, the collapse mechanism (yielding of reinforcement and crushing of core 

concrete at the same location) was corresponded to maximum PGA which the frames can sustain just 

before their collapse (or causing collapse). From the results it can be stated that steel reinforced frames 

were able to sustain higher maximum PGA for all four earthquake records because of higher ductility 

and strength. The average increase in maximum PGA for 3S1B frame reinforced with steel and SMA-

FRP was 42% and 20% respectively, as compared to GFRP reinforced frame. Similar results were 

observed for 6S2B frames. 

 

 
Figure 6.  IDA curves for 3S1B MRF subjected to ground motion records. 

 

5.2 Residual Inter-Storey Drifts 
 

During any seismic event structures which get severely damaged, exhibit permanent deformations. For 

MRFs permanent deformations are generally quantified in terms of residual drifts. Residual inter-story 

drifts (IDs) are therefore a good signal of the level of permanent damage sustained by the structure and 

are sourced by nonlinear behavior and yielding of reinforcement, development of cracks in concrete 



  

and crushing of concrete within plastic hinge zone. Fig. 7 shows the residual ID plots of 3S1B frame, 

when subjected to the four earthquake records. By comparing the residual ID values, it was observed 

that, SMA-FRP-reinforced frame on average exhibit about 84% less residual ID compared to 3S1B 

steel reinforced frame. Frame with steel reinforcement initially experienced less residual ID as 

compared to SMA-FRP and GFRP reinforced frames till the PGA range of 0.4g-0.5g due to higher 

stiffness. However once the steel reinforcement started to yield, it developed higher residual ID, for 

the same value of PGA, as compared to SMA-FRP reinforced frame. Because SMA exhibit almost 

negligible amount of residual strains after training process, the behavior of frame with SMA-FRP 

composite reinforcement in plastic hinge zone was found to be much superior. On the other hand, 

GFRP reinforced frame, which reached collapse limit state at a lower PGA value, exhibited on average 

49% higher residual inter story drift values as compared to SMA-FRP reinforced frame but 62% lesser 

residual inter story drift values as compared to steel reinforced frame. Irrespective of frequency 

content of earthquake excitation, SMA-FRP-reinforcement showed much better performance in ways 

to curb damage by recovering the applied strains. This tendency and property to re-center itself after 

experiencing inelasticity is the hallmark of SMA material and is that which distinguishes it from 

GFRP and steel as reinforcing material. 

 

 
Figure 7.  Residual inter-story drifts for 3S1B MRF.  

  

5.3 Dissipated Hysteretic Energy 

 
The ability of a structure to dissipate energy during a seismic event is also an important desirable 

seismic parameter. This dissipated energy is the direct result of damping and hysteretic nature of the 

material. But energy alone will not be enough indication to show the desirable characteristic of SMA-

FRP reinforcement. In order to illustrate the concept, hysteretic behavior of 3S1B frame reinforced 

with steel, SMA-FRP and GFRP when subjected to Kashmir earthquake record is shown in fig. 8. This 

figure is a plot between roof drift (ratio between displacement and height of frame) and base shear 

reaction. The response shown in the figure is governed by the hysteretic nature of material response 

and is shown for the PGA level causing failure in GFRP frame. Fig. 8 (a) clearly shows superior 

performance of steel reinforcement followed by SMA-FRP composite, in terms of energy dissipation, 

which is calculated, based off of cumulative area enclosed within the displacement vs. base shear plot. 

This improved potential comes from the fact that the stress-strain curve of steel and SMA-FRP 

contains more hysteretic area than GFRP. Steel and SMA-FRP reinforced frame when compared with 

GFRP frame showed 108% and 65% more energy dissipation, respectively. As mentioned before, the 

response of the three frames should be seen in light of energy dissipated and the permanent residual 
drifts, as both parameters govern the desirable response of a structure under seismic loading. Fig. 8 



  

shows that although steel frame was able to dissipate much more energy as compared to other two 

frames, it suffered residual drifts of 4.85% measured at the roof level. On the other hand, GFRP frame 

suffered 1.8% permanent drifts and failed at much lower PGA. Fig. 8 (b) shows the main benefits of 

using SMA-FRP composites which is their ability to dissipate energy with minimal permanent damage 

/ residual drifts (0.82% residual drift). 

 
Figure 8. Base Shear vs. roof drift for MRF subjected to Kashmir earthquake record. 

  

 

6. CONCLUSIONS 

 
This study focused on the use of SMA-FRP composite as a new reinforcement for RC MRFs to 

improve their seismic behavior and reduce their residual drifts after an earthquake.  SMA Composite 

specimens were prepared / tested in the laboratory and results were used to calibrate analytical 

material models. 3S1B and 6S2B prototype MRFs were designed and analyzed with steel, SMA-FRP, 

and GFRP rebars at the plastic hinge regions. IDA technique was used to study the seismic behavior of 

the frame under four different earthquake records. It was found that initially the frame with steel 

reinforcement experience less IDs as compared to the frames reinforced with SMA-FRP and GFRP, 

because of its higher initial stiffness. However, when steel starts yielding, the response tends to flip 

and steel frame experiences more ID values as compared to frame with SMA-FRP composite 

reinforcement. GFRP frames experienced more ID levels as compared to SMA-FRP frame due to 

rupture of GFRP reinforcement in the beams. Steel reinforced frames were able to experience more 

PGA value before reaching ultimate limit state of crushing of concrete in the column. GFRP reinforced 
frames were able to sustain least value of ground motion intensity and in all the cases failed at earlier 

stage of IDA as compared to frames reinforced with other two reinforcement types. It was also found 

that frame with steel reinforcement was able to dissipate more energy and showed higher initial 

stiffness as compared to frames with SMA-FRP and GFRP reinforcement, but at the cost of residual 

ID. Frame with steel reinforcement experienced 84% and 62% more residual IDs as compared to 

SMA-FRP and GFRP reinforcement, respectively.  The SMA-FRP reinforced frame was not only able 

to dissipate more energy compared to GFRP frame for the same PGA values, but also showed much 

lesser residual ID values as compared to frames with steel and GFRP reinforcements. This study 

showed that the use of SMA-FRP rebars in the plastic hinge zones of MRFs improves significantly the 

ductility, energy dissipation, and residual drifts compared to GFRP reinforced frames, thus improving 

the overall performance of frame under seismic hazard.  
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