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SUMMARY 
Two-dimensional models of a building on a rectangular, flexible foundation in nonlinear soil are analyzed. The 
building is assumed to be linear, but the foundation and the soil can experience nonlinear deformations. It is 
shown that the wave energy dissipated during the development of nonlinear strains in the soil can consume a 
significant part of the input wave energy, and thus less energy is available for excitation of the building. The 
results help explain why, during the 1994 Northridge earthquake in California, the damage to residential 
buildings in the areas that experienced large strains in the soil was absent or significantly reduced. The results 
also suggest major advantages that result from the designs that consider nonlinear soil response. 
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1. INTRODUCTION 
 
Spatial separation of damaged buildings and of pipe breaks in the near field during the 1994 
Northridge, California (Trifunac and Todorovska 1998) and the 1933 Long Beach, California 
(Trifunac 2003) earthquakes emphasizes the need to understand the nature of the nonlinear responses 
of soils near the ground surface and their relationship to the soil-structure interaction (SSI). An almost 
complete absence of damaged buildings in the heavily shaken areas, where soil experienced large 
nonlinear strains and deformations, suggests that some soils can absorb the energy of incident seismic 
waves and act as a large-scale natural isolation systems. Since the areas where this energy absorption 
takes place recurred during two consecutive earthquakes (Trifunac and Todorovska 2004), the 
associated nonlinear phenomena appear to be associated with the local site characteristics, which do 
not change for decades, and which therefore could be used, with essentially no additional cost, in the 
design of structures and in the more advanced approaches to seismic zoning (Trifunac 2008). 

The zones where buildings were damaged during the 1994 Northridge earthquake, or where pipes 
were broken (Trifunac and Todorovska 1997a,b), are not associated with obvious and easily 
identifiable differences in the amplitudes of recorded peak accelerations, peak velocities, or spectral 
amplitudes of strong ground motion (Trifunac et al. 1994; 1996; Todorovska and Trifunac 1997a,b), 
and more subtle and detailed site investigations are required to identify them. These investigations will 
require detailed and multi-parametric site characterizations that combine the physical properties of the 
site with the level of its water table and liquefaction susceptibility (Todorovska and Trifunac 1998; 
Trifunac 1995). The classical earthquake engineering approach correlates damage to structures with 
the largest relative response of the equivalent single-degree-of-freedom system, in a formulation that is 
typically based only on the largest peak of the relative response. While this approach can be refined to 
involve many of the largest peaks of the relative response in the near field of strong ground shaking 



(Gupta and Trifunac 1988), it appears that the damage is governed more by the strong pulses that 
emanate from the broken asperities on the moving fault, and hence by the power of these pulses and 
the energy they carry (Trifunac 2005; Gičev and Trifunac 2009a). Therefore, in this paper we select 
the excitation in terms of simple pulses, to simulate the actions of strong ground motion near faults. 

Previous studies of nonlinear response of soils to incident earthquake waves have focused on the 
changes in peak amplitudes of ground motion (Trifunac and Todorovska 1996) and the changes in the 
site periods (Trifunac 2008). To understand how the energy of incident waves is absorbed during 
passage of large, near-field pulses, it is necessary to work with hysteretic models of soils and to 
consider nonlinear representations of wave motion, which allow creation of strain-localization zones 
in the soil. To begin to understand these phenomena, we have started to analyze such problems 
incrementally in terms of simple models based on numerical modeling of two-dimensional SH wave 
motion and bilinear representation of nonlinear deformations (Gičev and Trifunac 2009a). We first 
considered nonlinear deformations in the soil and relative energy absorption during 2-D SSI, when the 
foundation and the building are assumed to respond as continuous linear media (Gičev and Trifunac 
2012). In this paper, we extend such analyses to (1) nonlinear soil and foundation, and (2) nonlinear 
soil and foundation with a thin, soft layer having low-yielding strain surrounding the foundation. In 
both cases, the building is assumed to respond in the linear range. 

It is known from theoretical investigations of SSI that rigid foundations are efficient in the scattering 
of incident seismic waves, and that this scattering depends on the foundation shape and its relative 
stiffness (Wong and Trifunac 1974; Gičev 2005). While this scattered energy is smaller for actual 
foundations of buildings because those are never as rigid as their mathematical models (Trifunac et al. 
1999), the scattering from flexible foundations still plays an important role in bringing about pockets 
of nonlinear soil deformation, which then lead to increased effective compliances and to their 
asymmetry. Observations of the response of full-scale structures during strong earthquake shaking 
show indirectly how prominent these nonlinearities in the soil-structure systems can be (Trifunac et al. 
2001a,b). Observations also show that these nonlinear deformations in the soil usually occur well 
before any damage begins in the buildings. Since this natural energy-absorbing mechanism is 
beneficial for reducing the damage in the buildings, it should be studied and whenever possible 
incorporated into future design methods. 

Nonlinear site response is a complex problem that involves many geometrical and material parameters 
in the description of the governing models, where extrapolations are at best very difficult due to the 
chaotic nature of large excitation and large nonlinear response. Hence, in the following our modest 
goal will be to illustrate what may occur in the presence of nonlinearities in the soil and in the 
foundation during SSI, while the building remains linear. Comprehensive sensitivity studies of how 
these results depend on all governing parameters are beyond the scope of this paper. 

2. MODEL 
 
During the wave passage, the soil, the foundation, and the structure can all undergo nonlinear 
deformations, and after the motion is over they can be left with permanent strains. Because the aim of 
this paper is to study only the nonlinear zones in the soil and in the foundation, those will be modeled 
as nonlinear, while the building will be forced to remain linear. The three variants of the model to be 
considered are shown in Figs. 1a and 1b. The model in Fig. 1a will be considered twice, first with 
linear and then with nonlinear deformations in the foundation. The incoming wave is taken to be a 
half-sine pulse of a plane SH wave, which is intended to model strong-motion pulses near faults. A 
dimensionless frequency ( )02 / / s da a tη λ β= = ⋅  will be used as a measure of the pulse duration 



(wavelength), where a is half the width of the foundation, λ  is the wavelength of the incident wave, 

sβ  is the shear-wave velocity in the soil, and 0dt  is the duration of the pulse.  

We will use the finite-difference model as described in Gičev and Trifunac (2012). To set up the grid 
spacing in the finite-difference representation of the model, the pulse is analyzed in the space 
domain(s), and the displacement in the points occupied by the pulse is 0( ) sin[( /( )]s dw s A s tπ β= ⋅ ⋅ , 
where A is the amplitude of the pulse and s is the distance of the considered point to the wave front in 
initial time, in the direction of propagation. Using the fast Fourier transform, the half-sine pulse is 
transformed into wave number domain ( k ) as [ ]( ) ( )w k F w s= . The maximum response occurs for k  = 

0 (rigid-body motion). As k  increases, the response decreases and diminishes toward zero as k 
approaches infinity. We selected the largest wave number to be considered in this analysis, maxkk = , 

for which the k-response is at least 0.03 of the maximum response (Gičev 2008). Then, for this value 
of maxk , the corresponding wavelengths and the corresponding frequencies are 

min max max2 / 2 /kλ π πβ ω= = . 

 

Figure 1. Nonlinear soil-flexible foundation-linear structure system: (a) linear or nonlinear foundation and 
nonlinear soil, (b) foundation surrounded by soft, nonlinear layer and nonlinear soil. 

 

Accuracy of the finite difference (FD) grid depends on the ratio of the numerical and physical 
velocities of propagation, /c β , which ideally should be 1. The parameters that influence this accuracy 
are: (1) the density of the grid xm Δ= /λ  (m is the number of points per wavelength λ , and xΔ is 
the spacing between the grid points); (2) the Courant number, /s t xχ β= Δ Δ ; and (3) the angle of the 

wave incidence, θ . It has been shown that the error increases when m decreases, χ  decreases, and θ  
is close to 0 or 2/π . For second-order approximation, it is recommended that 12m ≥  (Gičev 2008).  

To model soil response numerically, we chose a rectangular soil box with dimensions a10Lm ⋅=  and 
/ 2 5m mH L a= = ⋅  (Figs. 1a,b). For practical reasons, the maximum number of space intervals in the 

grid in the horizontal (x) direction is set at 250, and in the vertical (y) direction at 400 (125 in the soil 



box and 275 in the building). The minimum spatial interval for this setup is 
min / 250 95.5 / 250 0.382mx L mΔ = = = . For a finer grid, the computational time increases rapidly. With 

this limitation in mind, and for 2=η , the largest wave number, maxk , for which the response is 

greater than 3% of the maximum response, 0( )F k , has frequency srad /980max =ω (Gičev 2008). 

The shortest wavelength for shear-wave velocity in the soil 250 /s m sβ =  is then m603.1min =λ , 

and the finest grid density is min min/ 1.603/ 0.382m xλ= Δ = . This corresponds to about 

min min4 points / mλ < for this wavelength. Our numerical scheme is ( )22 , xtO ΔΔ , so we need at least m 

= 12 points/ minλ  to resolve the shortest wavelength, minλ . For 2=η , our grid cannot resolve the 
shortest wavelength when we have only 4 spatial grid points. This implies that the pulse should be 
low-pass filtered. A cut-off frequency sradc /200=ω  was chosen. Then m854.7min =λ  and grid 

density min min min min/ 7.854 / 0.382 20 points / m x mλ λ= Δ = ≈ > . It can be shown that for 5.0=η  only a 
negligible amount of the total power is filtered out, while for 2=η  a considerable amount is filtered 
out. Also, it can be shown that for 2=η  the amplitude of the filtered pulse is smaller than the 
amplitude of the non-filtered pulse, which we chose to be A = 0.05 m, while for 5.0=η  the 
amplitude is almost equal to the amplitude of the non-filtered pulse. Numerical tests have shown that 
the viscous absorbing boundary rotated toward the middle of the foundation-building interface reflects 
only a negligible amount of energy back into the model (Gičev 2005; 2008).  

For 2-D problems, the numerical scheme is stable if 2 2 1/ 2 1min[(1/ 1/ ) ]t x y β −Δ ≤ Δ + Δ . We assume that 
the shear stress in the x direction depends only upon the shear strain in the same direction and is 
independent of the shear strain in the y direction. The motivation for this assumption comes from our 
simplified representation of layered soil, which is created by deposition (floods and wind) into more or 
less horizontal layers. The foundation and the soil are assumed to be ideally elasto-plastic. Further, it 
is assumed that the contact points between the soil and the foundation remain bonded during the 
analysis and that the contact cells remain linear, as does the zone next to the artificial boundary (the 
bottom four rows and the left-most and right-most four columns of points in the soil box in Figs. 1a,b).  

 For our problem, the system of three partial differential equations (for u , v , and w ) describing the 

dynamic equilibrium of an elastic body is reduced to just one equation (because =u v 0=
∂
∂

=
z

). 

The abbreviations xzx εε = , xzx τσ = , yzy εε = , and yzy τσ =  will be used in the following. The 

Lax-Wendroff computational scheme is used for solving the governing equations (Gičev 2005).  

 

3. ENERGY AND DISTRIBUTION OF PERMANENT STRAIN 

In the following examples, we use the properties of the Holiday Inn hotel in Van Nuys, California to 
select the model properties of the building, and we consider the response in the east-west 
(longitudinal) direction only. This building was studied extensively using different models and 
representations (Gičev and Trifunac 2009b), and the body of those results can be used to complement 
future comparisons and interpretations of its response.  

A question arises as to how to choose the yielding strain mε  to study strain distribution in the system. 

The displacement, the velocity, and the linear strain in the soil ( sβ = 250 m/s) during the passage of a 



plane wave in the form of a half-sine pulse are ( )0sin / dw A t tπ= ⋅ , 0 0( / ) cos( / )d dv w t A t tπ π= = , and 

max 0/ /( )s s dv A tε β π β= = . If, for a given input plane wave, we choose the yielding strain mε  multiplied 

by some constant between 1 and 2, the strains in both directions will remain linear before the wave 
reaches the free surface or the foundation, for any incident angle. This case can be called “intermediate 
nonlinearity.” If we want to analyze only the nonlinearity due to scattering and radiating from the 
foundation, we should avoid the occurrence of the nonlinear strains caused by reflection from the half-

space boundary. Then we may choose 
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Figure 2. Reduction of wave energy entering the linear building for (a) linear foundation, (b) nonlinear 
foundation, and (c) nonlinear, soft layer surrounding the foundation, for different levels of soil nonlinearity (C = 
0.8, 0.9, 1.1, 1.3, 1.5, and 1.73) and for different foundation rigidities through fβ  = 250, 300, 500, and 1000 
m/s. 

 
This condition guarantees that in either the x or y direction the soil will undergo permanent strains 
during the passage of the plane wave. Generally, the yielding strain can be written as 

max 0/ /( )m s s dCv C A tε β π β= = , where C is a constant that controls the yielding stress (strain) in the soil. 
We then consider the following cases of nonlinearity, depending upon C (Gičev and Trifunac 2012): 



 
• 2C ≥ : Small nonlinearity. Nonlinear strain does not occur until the wave hits the foundation. 

• 2C1 <≤ : Intermediate nonlinearity. Permanent strain does not occur until the wave is 
reflected from the free surface or from the foundation. Permanent strain will or will not occur 
after the reflection from the free surface, depending upon the angle of incidence. 

• 1<C : Large nonlinearity. Permanent strain occurs after reflection from the free surface. 
Permanent strain may or may not occur before the wave reflects from the foundation. 

 
 
4. ENERGY DISTRIBUTION IN THE SYSTEM 
 
The energy flow through a given area can be defined, in terms of a plane-wave approximation, as 

0
2

0

dt
a
in s s snE A v dtρ β= ⋅ ⋅ ⋅∫ , where sρ  and sβ  are the density and shear-wave velocity in the soil, 

respectively, and v  is a particle velocity. snA  is the area (normal to the direction of the ray) through 

which the wave is passing. For our geometrical setting (Figs. 1a,b), the area normal to the wave 
passage is ( )2 sin cos sin cossn m m mA H L Lγ γ γ γ= ⋅ ⋅ + ⋅ = ⋅ + . Combining the above relations and 

integrating, the analytical solution for the input wave energy into the model becomes 

( ) 2
0 0sin cos ( / ) / 2a

in s s m d dE L A t tρ β γ γ π= ⋅ ⋅ ⋅ + ⋅ ⋅ . For the defined size of the soil island, Lm, and the 

defined angle of incidence, γ , the input energy is reciprocal with the duration of the pulse, which 
means it is a linear function of the dimensionless frequency η . Because for short pulses in our 

example calculations are low-pass filtered up to sradc /200=ω , the analytical and the numerical 

solutions for input wave energy will not coincide. Since our system is conservative, the input energy is 
balanced by: 

• Cumulative energy going out from the model, outE . 

• Cumulative hysteretic energy (energy spent for creation and development of permanent strains 
in the soil), computed from: 

                ( )∑∑
==

⋅++⋅+⋅=
N

1i
yeiypiyixeixpixi

T

0t
hys )5.0()5.0(tE

end

εΔεΔσεΔεΔσΔ ,    

where  endT  is the time at the end of the analysis; N is the total number of points; yixi σσ ,  are 

the stresses at point i in the x and y directions, respectively; t
xpi

tt
xpixpi εεε −=Δ Δ+  is the 

increment of the permanent strain in the x direction at point i; t
ypi

tt
ypiypi εεε −=Δ Δ+  is the 

increment of the permanent strain in the y direction at point i; t t t
xei xei xeiε ε ε+ΔΔ = −  is the 

increment of the elastic strain in the x direction at point i; and t t t
yei yei yeiε ε ε+ΔΔ = −  is the 

increment of the elastic strain in the y direction at point i. 

• Instantaneous energy in the building, consisting of kinetic and potential energies, can be 
computed from: 



                  ( )2 2 2

1
0.5 ( )

N

b k p b i x y
i

E E E x y vρ μ ε ε
=

= + = ⋅Δ ⋅Δ ⋅ ⋅ + ⋅ +∑ .  

This balance was discussed in Gičev (2008) for a semi-cylindrical foundation, a pulse with 5.1=η , 

for incident angle 030=γ , and a yielding strain defined by C = 1.5, and it will be assumed to hold 
here as well for the rectangular foundation. 

To study only the effect of scattering from the foundation, following Gičev (2008) the building will be 
considered to be high enough so that the reflected wave from the top of the building cannot reach the 
building-foundation contact during the time of analysis. The analysis is terminated when the wave 
completely exits the soil island. In this paper, the hysteretic energy in the soil and the energy in the 
building are the subjects of interest. Gičev studied these two types of energy as functions of the 
dimensionless frequency η . For a semi-circular foundation, he showed that as the foundation becomes 
stiffer, a larger part of the input energy is scattered, and less energy enters the building. 

Figures 2a, b, and c show the reduction of the energy entering the building relative to the case when 
the soil is linear. The results are shown for four different foundation stiffnesses expressed by way of 

fβ  = 250, 300, 500, and 1000 m/s. If the soil is linear, the reduction multiplier is 1. Figure 2a is 

reproduced here from the work of Gičev and Trifunac (2012) to help in the comparison with the 
results shown in Figs. 2b and c. It presents results for the foundation, which always deforms in the 
linear range. Figure 2b shows the results for the foundation material allowed to deform nonlinearly. 
Figure 2c shows the results for a nonlinear foundation surrounded by a thin, nonlinear layer (Fig. 1b). 

 In Figs. 2, we illustrate the energy reduction for six values of C = 0.8, 0.9, 1.1, 1.3, 1.5, and 1.73, as 
follows for the case of nonlinear soil, linear foundation, and linear building (Fig. 2a). (1) For small 
nonlinearity (e.g., C = 1.73), the ratios building

CE (C = 1.73) / building
linear soilE  (C = ∞ ) are close to one for every 

η , showing that the small nonlinearity in the soil does not reduce the energy entering the building 
significantly. (2) For intermediate nonlinearity (e.g., C = 1.5), the ratios building

CE (C = 1.5) / building
linear soilE  (C = 

∞ ) show that there is a small reduction of the energy entering the building with the smallest ratio r ~ 
0.94 near η  = 0.2 to 0.3 and for fβ  = 250 m/s in Fig. 2a. The values of η  = 0.2 to 0.3 correspond to 

the excitation with wavelengths 3 to 5 times longer than the width of the foundation, and this 
corresponds to the cases in which all points along the contact of soil and foundation are forced to 
move in phase and with similar amplitudes. With increasing η  (larger than ~0.7), the reduction 
decreases, and the ratio r in Fig. 2a tends towards 1. (3) For big nonlinearity (e.g., C = 0.8), the ratios 

building
CE (C = 0.8) / building

linear soilE (C = ∞ ) show that the reduction of energy entering the building is significant 

for all considered values of foundation stiffness. The ratio r is the smallest for the stiffest considered 
foundation ( fβ  = 1000 m/s). Figure 2b shows that when the foundation experiences nonlinear 

deformations, the reduction of the high-frequency energy entering the building is further increased 
relative to the case when the foundation remains linear. Figure 2c shows significant energy absorption 
capacity of the thin, nonlinear layer surrounding the foundation. 

The results computed for case (3) above are dependent upon the size of the model box. Before the 
wave reaches the foundation, it loses energy due to work spent for creation of permanent strains in the 
soil. But for our examples, this dependence turns out to be small. For example, as pointed out in Gičev 
and Trifunac (2012), for fβ  = 250 m/s and η  = 0.3, the case of linear soil gives  

building
linear soilE = 164,540 J. 

For soil box mL = 10a  wide and mH = 5a  deep, the energy entering the building is building
CE (C = 0.8) = 



90,769 J, and the ratio r = 0.55. For a soil box 20mL a=  wide and 10mH a=  deep, the energy entering 
the building is building

CE (C = 0.8) = 88,884 J, and r = 0.54, which is about a 2% difference for a smaller 
(approximately 2 x 2) soil box. From this, one can conclude that if this extreme 
case min

250 250( 0.8, 0.3) ( 0.8, )
f f

r C r Cβ βη η= == = = =  (see Fig. 2a) gives only a 2% difference, at other 

values of η  we will obtain even smaller differences due to different sizes of the model. However, if C 
becomes smaller (for larger nonlinearities) the dependence on the model size will become more 
pronounced. 

 

 

Figure 3. Reduction of wave energy by scattering, entering the linear building for (a) linear foundation, (b) 
nonlinear foundation, and (c) foundation surrounded by soft, nonlinear layer, for different levels of soil 
nonlinearity (C = 0.8, 0.9, 1.1, 1.3, 1.5, and ∞ ) and for different foundation rigidities expressed as fβ  = 300, 

500, and 1000 m/s. 

 

Next, we illustrate how the level of the nonlinearity affects the level of scattering. This is shown in 
Figs. 3a, b, and c. It is seen that the scattering does not depend much on the level of nonlinearity in the 
soil for small and intermediate nonlinearities and is essentially the same as in the case of linear soil. 
For large nonlinearity, the effect becomes more significant. The examples in Figs. 3 show that the 
stiffness of the foundation is the key factor that determines how much energy is scattered from the 
foundation. 

 



5. DISCUSSION AND CONCLUSIONS  

The examples of nonlinear soil and foundation responses shown in this paper confirm that the energy 
entering a building can be reduced significantly before the waves approach and then enter the building. 
Nonlinear soil structure interaction is thus a far more efficient “base isolation” system than what can 
be accomplished by installing base isolators at the foundation level or somewhere within the structure. 
Clearly, it is better to (1) absorb energy before it enters the foundation and the structure, and (2) 
absorb it in the soil, which has far more powerful absorbing capacity than any isolator because it can 
accommodate large volumes with nonlinear deformations. Finally, the energy absorption by nonlinear 
soil response is cheap and maintenance free.  

Nature has already provided us with such a powerful base isolation system, as evidenced by the 
documented reduction of damage to the buildings during the 1994 Northridge (Trifunac and 
Todorovska 1998) and 1933 Long Beach earthquakes (Trifunac 2003). Such reductions obviously also 
occurred during many other earthquakes in spite of the fact that those may not have been documented. 
However, as for any other energy-absorbing systems, the natural soil can also be an efficient and 
controllable energy sink only for a range of excitation amplitudes. This range will depend on many 
local conditions, and on the proximity to the moving fault and to the zones of extreme amplification of 
seismic waves. In terms of what has been learned following the Northridge earthquake, this useful 
range might extend to peak ground velocities of 150 to 200 cm/s (Trifunac and Todorovska 1998). 
Near and beyond these large, strong-motion amplitudes, the soil may begin to break into blocks that 
move independently on the liquefied substratum. The structures will then begin to be damaged and 
destroyed by large differential displacements and rotations of their foundation, due to deformations 
and forces larger than those resulting from shaking. 

In a real three-dimensional setting, the nonlinear soil response is obviously far more complex than 
what has been illustrated in this paper, but the effects can be expected to be qualitatively the same. The 
challenge for the next generation of performance-based design methods will be to include the soil in 
the design of the complete building-soil system and to maximize its energy-absorption potential for 
incident strong-motion waves. 
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