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SUMMARY: 

Performance of a structure could be evaluated by computing the probability of occurrence for a specific state in 

the structure. Mostly, simulation techniques such as Monte Carlo simulation (MCS) and approximate approaches 

such as first-order reliability methods (FORM) are used to find the failure probability of the structural elements. 

Since the simulation methods are computationally expensive and the FORM could show inefficiency in 

reliability analysis of the building structures under earthquake excitation, here an innovative response surface 

method has been proposed. Linear response surface function has been used to approximate the performance 

function, based on the calculated damage index for the structural elements. The proposed method has been 

implemented on a nine-story steel moment-resisting building frame and the results indicate that the failure 

probability of the structural elements could be approximated with appropriate accuracy using the proposed 

method. 
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1. INTRODUCTION 

 

The behavior of the structural elements and the effects of the surrounding environment are 

accompanied by inevitable uncertainties. In this regard, accurate performance estimation of the 

structure should be carried out with respect to these uncertainties. In the context of the reliability 

analysis, failure probability of a structural system under randomness of its characteristic parameters 

and applied loads could be expressed mathematically in its simplest form as in Eqn. 1.1 (Ditlevsen and 

Madsen, 1996). 
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Where, fp is the probability of failure, X is the vector of considered random variables, )X(f  is the 

joint probability density function of the random variables, and )X(g  is the performance function 

which is used to define the state of the system. In structural reliability analysis, the performance 

function is defined in its simplest form as: performance = threshold – response of the structure. 

Threshold is a predefined constant value and the structure is considered safe if the response of the 

structure does not exceed this value. The limit in which the performance function is equal to zero 

( 0X =)(g ) is called limit state function (LSF). The LSF separates the space of the random variables 

into two domains: safe and failure domain. Since calculating the integral in Eqn. 1.1 is not feasible for 

most of real-world structural systems (Haukaas and Der Kiureghian, 2004), simulation techniques 

such as Monte Carlo simulation (MCS) and approximate methods such as response surface methods 

could be used to find the solution for structural reliability problems. The simulation techniques are 



highly efficient methods to compute the reliability of complex engineering structures. However, they 

involve obtaining hundreds of samples for the desired responses of the structure, in order to maintain 

an acceptable accuracy (Ditlevsen and Madsen, 1996; Nowak and Collins, 2000; Baecher and 

Christian, 2003). Since the finite element analysis of the building structures under earthquake 

excitation with nonlinear behavior could be highly demanding, implementing the simulation 

techniques in many circumstances does not seem as an easy solution to these types of reliability 

problems. In these regard, approximate approaches such as response surface methods could be of 

practical value. In this study, a new response surface procedure has been proposed to estimate the 

reliability of the building structures under earthquake excitation. The emphasis has been placed on 

reliability analysis of steel moment-resisting frames. The performance of the structure has been 

evaluated through the calculated cumulative response at the end of the nonlinear time history analysis.   

 

 

2. GENERAL ASPECTS OF THE RESPONSE SURFACE METHOD 

 

First introduced by Box et al. (Box and Wilson, 1951; Box, Hunter, and Hunter, 1978), the purpose of 

response surface method (RSM) is to establish an approximate model to estimate the desired 

parameter, based on the input variables. As mentioned before, reliability analysis of the building 

structures could be computationally demanding and the RSM could facilitate an easy and fast 

approach to obtain the failure probability of these strcutures. In this regard, many researchers have 

done numerous studies on developing response surface methods and improving their efficiency (for 

example; Faravelli, 1989; Bucher and Bourgund, 1990; Rajashekhar and Ellingwood, 1993; Yao and 

Wen, 1996; Kim and Na, 1997; Tandjiria, Teh and Low, 2000; Guan and Melchers, 2001; Gayton, 

Bourinet and Lemaire, 2003; Gupta and Manohar, 2004; Kaymaz and McMahon, 2005; Wong, Hobbs 

and Onof, 2005; Gavin and Yau, 2008; Allaix and Carbone, 2001; to name a few).  

 

In reliability analysis, RSM intends to approximate the LSF with a function of considered random 

variables. This function is referred to as response surface function (RSF). The RSF could be used 

instead of the LSF to estimate the probability of the failure, using promising methods such as MCS or 

approximate methods such as first- and second-order reliability methods (FORM and SORM). Mostly 

a polynomial function of the random variables is used as the RSF. The polynomial degree of RSF is 

one of the important aspects of the RSM. The accuracy of the RSF and also the computational cost for 

establishing the RSF, are dependent on the degree of RSF (Rajashekhar and Ellingwood, 1993; Allaix 

and Carbone, 2001). In order to set up the RSF, the LSF should be evaluated in the selected sampling 

points to establish a system of equations to determine the constant coefficients of the RSF. The 

selection of the sampling points has also crucial effect on the results of the RSM. The sampling points 

are selected around a center point within a specific distance from it. The range in which the sampling 

points are selected could be defined as [ ]iiii ff σµσµ +−  , , where iµ and iσ are mean value and 

standard deviation of ith random variable (Bucher and Bourgund, 1990). The parameter f controls the 

distance around the center point, in which the LSF is being approximated by RSF. 

 

 

3. PROPOSED RESPONSE SURFACE METHOD 

 

3.1. Cumulative Response Function 

 

Damage indices could be used to check the performance of a designed structure, to assess the damage 

in the structure after earthquake, or to study the reliability of an existing structure to estimate the 

performance of the structure in pre-earthquake evaluation (Kappos, 1997). In this study the damage 

index (DI) of the structural elements are calculated based on the model developed by Mehanny and 

Deierlein (Mehanny and Deierlein, 2001). Positive and negative cumulative inelastic deformation of 

the element has been used to calculate the DI, according to Eqn. 3.1. 
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where the +
pθ  is the inelastic component deformation in the positive direction, +

puθ is the capacity of 

the element under monotonic loading, α and β are the calibration coefficients which are equal to 1 

and 1.5 in steel elements, respectively. The damage index is calculated based on the deformation in 

primary half cycle (PHC) and follower half cycle (FHC). More explanation on this DI could be found 

in Mehanny (1999). +
θD is the amount of damage cause by positive loading and the damage caused by 

reversed (negative) loading should also be calculated. Then these two values are used to obtain the 

damage index of the element in the monitoring section, using Eqn. 3.2. The calibration coefficientγ  is 

equal to 6 in steel elements. The amount of the DI could vary from 0~0.1 (not damaged) to 1~1.1 

(failed) in a specific section of an element.  
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In this study; in order to estimate the damage in a specific element of the building; the DI calculated in 

the sections of the element is used to calculate the overall damage measure of the element. In this 

regard the weight of the damage in each section of an element is calculated through Eqn. 3.3. 
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where iDI is the damage index in the ith section of the element, N is the number of the monitoring 

sections in the element and 
iDIW is the weight of the damage in the ith section. Then the measure of 

damage in the element ( elementDI ) is calculated by summation of the damage in the sections of the 

element with respect to the weight of damage in each section (Eqn. 3.4). This representative for the 

damage of an element could be used to estimate the failure probability of that element in the structure. 
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Using DI to evaluate the performance of the structure facilitates considering the effects of cumulative 

nonlinear deformation of structural elements in probabilistic seismic evaluation of the building. Also 

the DI-based performance function provides the option of calculating the reliability of a dynamic 

system with time-invariant reliability approach (Koduru and Haukaas, 2010).  Since the cumulative 

damage index is calculated at the end of the nonlinear time history analysis of the structure, reliability 

of the building structure under the earthquake action could be computed at the end of the structural 

analysis, using the time-invariant reliability methods. 

 

In this study the performance of a structural element or a story of the structure is evaluated by the 

corresponding damage representative. In order to approximate the Damage-based limit state function 

of an element, a linear function of the considered random variables is proposed (Eqn. 3.5). 
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where )(g~ X is the RSF of the considered random variables n,...,ix 1 , i = . a  and ib are the 

coefficients of the RSF, which should be calculated based on the evaluation of the LSF. Once these 

coefficients are found, the RSF is used to find the probability of failure of the structure. 

 

3.2. Determining the Sampling Center 

 

In order to generate the sampling points required to establish the RSF, center of the sampling should 

be specified. In this study, the center point of sampling is chosen based on the results of the three 

deterministic analyses of the structural system. These analyses are performed based on three different 

realizations of the random variables. First structural analysis is performed for the realization of the 

random variables in which the load-type random variables are set to ii fσµ − and the resistance-type 

random variables are set to ii fσµ + ( iµ and iσ are the mean and standard deviation of ith random 

variable), resulting in the lower bound value for the response of the structure (Rlower). Second analysis 

is performed with the mean values assigned to all of the random variables. This analysis results in the 

assumed mean response (Rmean) of the structure. Finally the last analysis is performed for the 

realization of the random variables in which the load-type random variables are set to ii fσµ + and the 

resistance-type random variables are set to ii fσµ − , resulting in the upper bound value for the response 

of the structure (Rupper). In order to categorize the parameters into load-type and resistance-type 

variables, forward finite difference approach could be used: 
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where iµ is the mean value of the random variable ix and ix∆ is the perturbation factor which should 

be reasonably small with respect to each random variable. A random variable with positive gradient 

value is considered as a resistance-type variable. On the other hand the gradient value of load-type 

variable is negative. Table 3.1 contains the realization of the random variables for these three 

deterministic analyses. 

 

               Table 3.1. Realization of each type of the random variables for deterministic analyses 

 load–type variables resistance–type variables 

   
Analysis 1 ( Rlower) ii fσµ −  ii fσµ +  

Analysis 2 (Rmean) iµ  iµ  

Analysis 3 (Rupper) ii fσµ +  ii fσµ −  

 

Then a linear regression is used to set up a relation between the f parameter and the calculated 

responses from the deterministic analyses. Table 3.2 contains the values of f parameter and the 

response values for which the linear regression should be applied. The established relation between the 

f parameter and the response values are shown in Figure 3.1, separately for the load-type and 

resistance-type variables. p and q are the constant value resulted from the linear regression analysis. 

This established relation is used to define the center of the sampling, with respect to the desired 

threshold in the performance function.  



 

       Table 3.2. Regression variables for the load-type and resistance-type variables 

 

 

 

 

Center of Sampling 

 

Damage-based Response 

 
Regression for 

load –type variables 

 

Regression for 

resistance –type variables 

      
-f 0 +f -f 0 +f 

Rlower  Rmean Rupper Rupper Rmean Rlower 

 

 

Resistance-type variables

- f + f0

Rmean

Rupper

Rlower

R(f)=p+q.f

Load-type variables

- f + f0

R(f)=p+q.f

Rmean

Rupper

Rlower

 

 

Figure 3.1. Relation between the center point of sampling and the damage-based response of the structure  

 

Since the RSF is intended to approximate the LSF in the portion of the random space that the sampling 

points are selected; by using the derived relation between the parameter f and the damage-based 

response of the structure; the sampling points are localized around the point which is close to the LSF. 

To this end, the distance of the sampling center from the mean value of load-type and resistance-type 

variable are determined from Eqn. 3.7 and Eqn. 3.8, respectively. 
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By placing the sampling around the point in which the load-type variables are equal to ii f σµ ′+ and 

the resistance-type variables are equal to ii f σµ ′′+ , the sampling points will be generated in a portion 

of the random space that is close to LSF. Therefore the LSF could be appropriately approximated by 

the established RSF. 

 

3.3. Sampling Method and the Failure Probability 

 

In this study the random sampling technique has been used in each step of the proposed procedure to 

generate the sampling points. The established RSF in each step is considered as one of the possible 

RSFs to approximate the LSF, which is used to calculate the failure probability. The corresponding 

failure probability is also considered as one of the random estimations of the actual failure probability. 



Therefore instead of finding a specific value, n random samples would be calculated for the failure 

probability. Then these n samples are used to calculate the ultimate failure probability in the system. 

Since establishing the proposed linear RSF for large number of the random variables is practically 

feasible, this procedure could be repeated as many times as required to reach the desired accuracy. The 

ultimate probability of failure is obtained as the mean value of the calculated failure probabilities, up 

to the current iteration of the procedure.  Convergence of the obtained failure probability could be to 

check by Eqn. 3.9, in each iterative step of the procedure.  
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where 
c

ultimate,fp  and 
p

ultimate,fp  are the ultimate failure probability which are calculated at current and 

previous iterations of the procedure, respectively. The accuracy of the calculated ultimate failure 

probability (ε ) is assumed to be 1% in this study. The proposed method will be referred to as random 

response surface (RRS) method, hereafter. 

 

 

4. VALIDATION STUDY 

 

In order to implement the proposed method to determine the reliability of the building structures under 

earthquake excitation, the failure probability of a nine-story steel moment-resisting frame denoted as 

SAC-9 building is calculated. This building has been designed according to the 1994 UBC seismic 

design code specifications for Los Angeles, California region. Detailed characteristics of the SAC-9 

building can be found in Gupta and Krawinkler (1999). The 2-D moment-resisting frame of this 

building; used in numerical analyses; is presented in Figure 4.1. 

 

 

 

Figure 4.1. Moment-resisting frame of the SAC-9 building 

 

The OpenSees finite element platform (McKenna, Fenves and Scott, 2003) has been used to perform 

the nonlinear time history analysis of the structure. By assigning a material with random 

characteristics to the fiber sections of the elements, probabilistic capacity and stiffness of the structural 

elements has been incorporated into the finite element model. Modulus of the elasticity and the yield 



stress of the constructional steel have been taken as the probabilistic characteristics of the steel. Also 

the uncertainty in the seismic mass of the stories and the damping ratio of the first and third modes of 

vibration (to assign rayleigh damping) are considered in creating the probabilistic model of the 

structure. The probabilistic parameters considered in reliability analysis of the structure, along with 

their mean value, coefficient of variation (COV), standard deviation (SD) and distribution type are 

shown in Table 4.1. 

 

In order to consider the nonstationary stochastic characteristics of the ground motion, the model 

proposed by Rezaeian and Der Kiureghian has been used to create a filtered white-noise process with 

both temporal and spectral nonstationary characteristics (Rezaeian and Der Kiureghian, 2008). The 

created nonstationary process has been used along with random peak ground acceleration (PGA) to 

model the probabilistic characteristics of the seismic loading.  

 

Table 4.1. Characteristics of the considered random variables 

Parameter Mean COV (%) SD Distribution Type 

     
Yield Stress in Columns 3620.4  kgf/cm^2 15% 543.1×10

4
 Lognormal 

Yield Stress in Beams 2606.1  kgf/cm^2 15% 309.9×10
4
 Lognormal 

Modulus of Elasticity 2.1×10
10
  kgf/cm^2 3% 63×10

7
 Lognormal 

PGA 1g  m/sec^2 30% 0.3 g Lognormal 

Story Seismic mass 50410  kgf-sec^2/m 20% 10082 Lognormal 

Damping Ratio 4% 25% 1% Lognormal 

 

In order to evaluate the accuracy of the RRS method in estimating the failure probability of the SAC-9 

building, MCS technique has been used to obtain the benchmark results. In order to have sufficient 

number of simulation, 1000 runs of the finite element model of the SAC-9 has been performed. The 

number of the required simulation to maintain a specific level of accuracy for MCS results can be 

found through Eqn. 4.1, (Soong and Grigoriu, 1993; Nowak and Collins, 2000). 
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Where ][C.O.V fp is the coefficient of variation of the failure probability (
fp ), which indicates the 

accuracy of the MCS results. Based on Eqn. 4.1, for probability of failure equal to 28%, 1000 

simulations would result in 5% accuracy. Since the designed building structures are supposed to enter 

the nonlinear phase and dissipate the applied excitation of the earthquake by plastic deformation, 

probability of failure in most of the cases is greater than 28% and the 5% accuracy is assured by 1000 

simulations. 

 

Here, the proposed procedure has been used to estimate the failure probability of the structural 

elements of the SAC-9 building. The Damage index of each element in its end sections with higher 

seismic demand has been calculated through Eqn. 3.1 and Eqn. 3.2. The failure probability in the 

critical section of the each element is calculated by the damage-based performance function. The 

results of the numerical analysis are presented only for two of the structural elements, denoted as B22 

and C84 in Figure 4.1. The obtained results from the MCS and RRS method are represented in Figure  
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Figure 4.2. Results of the MCS and RRS method for B22 and C84 elements 

 

4.2. The estimations of the RRS method are obtained for the Mean+ SD, Mean and Mean−SD damage 

thresholds, resulted from the MCS. These results indicate that the RRS method could estimate failure 

probability in the sections of the structural elements with appropriate accuracy. The difference 

between the estimations of the RRS method and the MCS results in the Mean+ SD threshold is less 

than 5% in most of the structural elements of the SAC-9 building. 

 

 

5. CONCLUSION 

 

In this study, a new response surface procedure has been proposed to estimate the failure probability 

of the building structures under earthquake excitation. The emphasis has been placed on reliability 

analysis of steel moment-resisting frames. The performance of the structure has been evaluated 

through the calculated damage representatives for the elements of the structure. A linear function of 

the considered random variables has been used to approximate the limit state function. The sample 

points used to obtain the coefficients of the response surface function are chosen randomly in each 

step of the analysis. Since the resulted failure probability is obtained based on the random pairs of 

sampling points, this procedure should be repeated for several times to assure that the desired accuracy 

on the estimated failure probability has been achieved. The proposed method has been implemented 

on a nine-story steel moment-resisting building frame and the results are compared with those from 

the Monte Carlo simulation (MCS). The results indicate that with significantly less computational 

effort, the proposed method could be used in probabilistic seismic performance evaluation of the steel 

moment-resisting frames. The failure probability of a single structural element of the structure could 

be calculated by the RRS method, based on the corresponding damage measures. 
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