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SUMMARY:  
An efficient post-event assessment of bridges immediately after an earthquake can be useful in the organization 
of the initial emergency phase. The information available shortly after an earthquake can be difficult to manage: 
it may be in continuous evolution and arriving from different sources (e.g. sensors placed on the structure, 
seismological sources and recordings of the ground motion). This large amount of data can be processed to 
assess the condition of the structures and used to make decisions about its operation through the use of Bayesian 
Network (BN) models. Such tools allow probabilistic updating of the state of the structure in light of any 
observed evidence. This information, together with estimated losses relative to different bridge damage levels, is 
then used to formulate a decision problem regarding the optimal decision to make. An example presented herein 
will demonstrate the methodology for a bridge in a macro-scale analysis context. 
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1. INTRODUCTION 
 
In the aftermath of an earthquake, it is useful to know the general condition of an entire area, though it 
is generally not possible to assess every single structure in detail. For this reason, macro-scale analyses 
are important to receive preliminary information about the most likely condition of the structures in a 
given area. 
 
This study focuses on bridges. Bridges can be considered as strategic elements of civil transportation 
infrastructures that guarantee connection between different parts of the urban grid, linking together 
different kinds of communities and businesses. Assessment of whether the connection is still working 
after an extreme event (e.g. an earthquake, a hurricane, an explosion) can be very important in the 
emergency phase organization. In order to be able to make such an assessment quickly and efficiently, 
in this work, the traditional macro-scale analysis approach is integrated into a flexible Bayesian 
Network (BN) framework as a suitable modelling tool for complex systems able to merge different 
kinds of knowledge (objective and subjective) leading to a prediction (and diagnosis) of the state of a 
structure. 
 
An example is shown in this paper demonstrating the possibility to use this tool for seismic risk 
assessment and decision making.  
 
 
2. BNs AS SUITABLE TOOLS FOR SEISMIC RISK ASSESSMENT 
 
The use of BNs as risk assessment tools is mainly based on their capability to merge different kinds of 
information and knowledge together with their intuitive graphical communication language which is 
helpful when different parts are involved in a decision phase. 
 



 

 

BNs are made of nodes (i.e. variables) and arrows (i.e. links indicating the relationships between 
variables). Provided the nodes representing specific variables are present in the network, they can be 
updated using any kind of information (e.g. from seismological sources, from transducers, with 
subjective information coming from visual inspection of the structure).  
 
Furthermore, information can propagate in a BN both forwards and backwards. This is because the 
probabilistic inference in BNs can be both predictive and diagnostic. This property represents the 
power of this tool because in structural assessment, it is important to be able to update the scenario 
with the information coming from different sources.  
 
In addition, BNs are becoming a common language in the engineering community. An important sign 
is given by the fact that, from 2001 to 2008 the number of relevant publications in this field per year 
has increased from about 4 to 18 (Weber et al., 2012) (Fig. 2.1) 
 

   
Figure 2.1. Increasing use of BN in risk analysis (Weber et al. 2012) 

 
 
3. WHAT ARE BNs? A BRIEF BACKGROUND 
 
Bayesian Networks are a set of random variables linked together defining a so-called Direct Acyclic 
Graph (DAG) (Fig. 3.2). 

 
 

Figure 3.2. Simple DAG 
 
Each variable is characterized by a Probability Mass Function (PMF). This is marginal, if the node is a 
root node (i.e. without preceding inks), or conditional if the node is conditional upon the other nodes. 
In Fig. 3.2, for instance, Nodes A and B are characterized by a marginal PMF and they are called 
parents of C (that is a child of A and B), given in terms of conditional PMF. 
 
Each node is discretized into a set of mutually exclusive, statistically independent states and it is 
associated with a Conditional Probability Table (CPT) representing the conditional probability of 
occurrence of that variable, given its parent nodes. For example, the CPT of the variable C is given by 
Eqn. 3.1.   
 

))C(pa|C(P)B,A|C(P =     (3.1) 
 
where P indicates the probability and pa(C) indicates the parents node of C.  



 

 

 
As mentioned earlier, BNs can be updated with any available information and they are suitable for 
answering probabilistic queries when one or more variables are observed. For instance, take the 
variable A which is subdivided in n mutually exclusive states (i.e. a1, a2,.., an). Let e={A=a1} denote 
the observed information or evidence on the variable.  
 
The conditional distribution of any other set of the variables given this evidence is obtained by 
applying the Bayes' rule. For example, the updated joint distribution of random variables B and C 
given a is given in Eqn. 3.3. 
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Other kinds of nodes can be used in the definition of a BN: decision nodes and value nodes. The 
former account for all the possible outcomes considered in the decision phase, the latter assign a value 
to each option. The use of all these nodes is presented in this paper. 
 
4. BN FRAMEWORK DESCRIPTION 
 
The BN framework proposed in this paper has been developed for macro-scale seismic risk assessment 
and decision making for bridges. In the definition of this framework, different tools have been 
involved. Structural analyses, traditional probabilistic concepts and macro-scale analysis tools are 
coordinated through the BN philosophy. The proposed BN framework (Fig. 4.1) is schematized using 
three sub-models. 
 

 
 

Figure 4.1. Proposed BN Framework 
 
Details relative to the aforementioned sub-models are given in the following sections. 
 
4.1 Seismic Source Sub-model 
 
The Seismic Source sub-model presented herein, has been developed for a 3D plane source and the 
relationships between the variables are mainly defined through geometrical considerations.  
 
The already mentioned sub-model is given in Fig. 4.2 where Xh and Yh are the hypocentre position 
coordinates, XPf and YPf are the coordinates of a selected reference point of the rupture (Pref is given 
Fig. 4.3), A is the rupture area, M is the magnitude of the event, Ztor, Rjb and Rrup are the ground motion 
parameters representing the seismogenetic depth, the Joyner-Boore distance and the rupture distance 
respectively, Ejb-rup is the model error used for the definition of Rrup given as a function of Rjb (details 
provided later) and IM is the considered Intensity Measure. 
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Figure 4.2. BN framework for seismic 3D plane source 
 
To establish the relationships between variables in the BN-based seismic source model, some 
assumptions have been followed. The hypocentre position is randomly simulated on the fault assuming 
that all the points of the surface are equally likely (i.e. prior PMF for Xh and Yh is uniform). Magnitude 
is simulated as truncated exponential as proposed by the modified Gutenberg-Richter model 
(Guttenberg and Richter, 1944). The rupture area A is defined as a function of magnitude (M) 
following the relationship proposed by Wells and Coppersmith (1994) and given in Eqn. 4.4: 
 

22082087210 .M..)A(log ⋅+⋅+−= ε        (4.4) 
 
where ε is assumed to be standard normal.  
 
Considering that the position of the hypocentre can be anywhere on the fault and that the rupture area 
is assumed square, it is possible that the simulated area is too big to fall entirely in the fault plane. For 
this study, the theory of the conservation of the area is assumed as valid and the rupture is shifted 
inside the fault as shown in Fig. 4.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3. Hypocentre position close to the fault boundary 
 

Once the position and the dimension of the rupture area are defined, the parameters for the definition 
of the intensity measure are determined through geometrical considerations.  
 
The Joyner-Boore distance is defined adopting an auxiliary variable (Yref) as illustrated in Fig. 4.4. 
Additional details about the formal definition of these parameters can be found in Broglio (2011).  
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Figure 4.4. Geometrical Definition of Rjb 
 

The rupture distance has been defined through empirical relationships as specified in Scherbaum et al. 
(2004). The seismogenetic depth (Ztor) has been defined as a function of the geometry of the fault. Rjb, 
Rrup, Ztor and M are then used for the simulation of the IM CPT. 
 
4.2 Structural Response and Damage Sub-model  
 
The Structural Response and Damage Sub-model is responsible for controlling the probabilistic 
relationships between the seismic event, the response of the structure and the consequent physical 
damage.  
 
The continuity between the Seismic Source Sub-model and the Structural Response and Damage Sub-
model is given by the IM. This is a Structure-Dependent Displacement-Based IM (details relative to its 
definition and selection can be found Broglio et al. (2010) and Broglio (2011)). As can be noted (Fig. 
4.2 and Fig. 4.5), the IM is defined in terms of both ground motion parameters and structural 
properties, such as Ty (i.e. the period of the bridge) defined as a function DL (i.e. deck length) and ∆y 
(i.e. yield displacement of the bridge).  
 

 
Figure 4.5. Structural Response and Damage Sub-model 

 
The definition of the structural properties, the relationship and the predictive laws linking the IM to the 
EDP (i.e. Engineering Demand Parameter), have been defined by performing a parametric 
investigation on a population of 21 concrete continuum deck, regular and irregular bridges, with seven 
different pier layouts (the length of the pier is 7m, 14m and 21m, labelled 1,2 and 3 respectively), two 
deck lengths (i.e. 200m and 400m) and three different abutment types accounting for different 
behaviours (indicated as A, B and C).  
 
The predictive relationship between IM and EDP is given by Eqn.4.6 (derived from Cornell et al. 
(2002), where the parameters a, b (regression parameters) and β (dispersion) are assessed using linear 
regression analysis between the two variables and ε is assumed to be standard normal). In this study, 



 

 

EDP represents the maximum mean displacement and it is obtained performing nonlinear dynamic 
analysis by applying a group of accelerograms to each bridge of the population. 
 

εβ++= )alog()IMlog(b)EDPlog(             (4.6) 
 
Relationships between different structural properties are defined by performing pseudo-static analyses 
(in particular Displacement-Based Adaptive Pushover, DAP). Details about this approximate 
formulation are given in Broglio (2011). 
 
The node EDPLS represents the limit state given in terms of global displacement. This limits states are 
given in terms of system ductility, following the recommendations given by Priestley et al. (1996).  
 
The variable DM accounts for the physical damage and it is defined through a likelihood matrix that 
specifies the probability to observe a particular physical damage in the structure given an observed 
level of displacement, as schematized in Table 4.1. The construction of this matrix is based on 
common sense and updating based on real data is desirable in future developments of this study.  
 
Table 4.1. Example of the structure for the likelihood matrix 

 LEVEL OF DISPLACEMENT  (EDPLS) 
PHYSICAL DAMAGE 

(DM) 
Probability to observe a specific physical damage if the structure is 

performing at a given level of displacement. 
 
4.3 Loss model and Influence Diagram  
 
The BN can be used to support decision-making under uncertainty to define the optimal decision to 
make after a seismic event. The tool used to solve the decision problem is called the Influence 
Diagram (ID), which is a BN extended by the addition of decision and utility nodes. Each decision 
node has states indicating the available alternatives. Each of these alternatives is related to direct and 
indirect losses. Direct losses are those related to the damage of the building itself, while indirect losses 
are due to business slow-down if the bridge is closed, and the cost of liability if the bridge is left open, 
depending on the damage state of the bridge. Losses are represented by utility nodes. For this example, 
the total cost of direct and indirect losses is considered in an approximate way as normalized values 
(weights) relative to the cost replacement of the bridge. 
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Figure 4.6. Influence Diagram (ID) 

 
The Influence diagram used in this study is given in Fig. 4.6. This is composed by two decision nodes. 
These are INSPECTION (conduct or not conduct an inspection) and FINAL DECISION (continue 
operation, partial operation or close the bridge). These nodes are related to utility nodes, shown as 
diamonds. These nodes state the costs associated with each decision alternative (COST INSP is the 
cost of inspection and COST is the total cost related to closure, partial closure or non-closure of the 
bridge). The DM chance node represents the link between this sub-model and the Structural Response 
and Demand Sub-model, the EXPERT node indicates the quality of the inspection and is defined 



 

 

through the test-likelihood matrix. The additional information obtained by performing the inspection 
updates the probability distribution of the state of the bridge and, thus, influences the final decision. 
 
 
5. EXAMPLE APPLICATION 
 
This example has been developed to show the BNs application in the seismic risk assessment context, 
highlighting the use of the ID as an important tool for the decision making phase. 
 
The source model applied in this example is the one presented in section 4.1 with reference to the 
rectangular plane fault shown in Fig. 5.1, recalling that the rupture area due to a seismic event is 
assumed to be square. Assuming that the plane source considered in this example is the simplified 
representation of the Paganica Fault, the dip angle is taken equal to 50°. The total area of the fault is 
then about 224km2. 
 

 
 

Figure 5.1. Fault and bridge population scheme 
 
The structure properties are given by the deck length (DL), the yield period (Ty) and the yield 
displacement (∆y) simulated following approximated relationships developed using the aforementioned 
bridge population. The structural response is given by the EDP. EDPLS and DM are the variables 
relative representing the limit states and the physical damage states observed in the structure.  
 
The EXPERT node gives the PMF of the possible inspection outcome, given the real (coming from the 
analyses) damage state. The COST INSP and the COST nodes are value nodes accounting for the 
values related to all the possible outcomes presented in the network and listed in the decision nodes 
(i.e. INSPECTION and FINAL DECISION).  
 
It is assumed that the evidence sequence given in Table 5.1 becomes available after an earthquake and 
the evolution of the variables involved is then observed each time an evidence is entered in the 
network. 
 
Table 5.1. Evidence Sequence 

Evidence 1 Magnitude [6.5-6.75] 
Evidence 2 Deck Length [325 330] m 
Evidence 3 Rupture Area [157 179] km2 
Evidence 4 EDP [0.15 0.15] m 
Evidence 5 Expert Opinion [SPLITTING] 

 
As can be seen in Fig. 5.2, as expected, the information about the magnitude does not influence the 
prior PMF relative to the deck length of the bridge under observation. The effect of Evidence 1 is clear 
in the Rupture Area PMF, shifting towards the right direction, thus showing higher probabilities for a 
larger rupture area than the one expected in the prior scenario (Fig. 5.3). As can be seen, the highest 
probability of occurrence is observed for the range [224.020  224.024] km2 (given in Fig. 5.3 as 
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[224.020  ∞)). This is reasonable considering that the Wells and Coppersmith (1994) relationship has 
been used and the error has been simulated as normally distributed and truncated at +/-3σ. 
 
 
 
 
 
 
 
 
 
 
 

 

(a)                               (b) 
Figure 5.2. Magnitude and Deck length PMFs (prior and posterior) 

 
After the Evidence 1, the PMF relative to the EDP is shifted in the direction of higher displacement 
values than those observed as from the prior results (Fig. 5.4 (a)), and the EDPLS PMF undergoes the 
same effect as the aforementioned variables (Fig. 5.4 (b)). EDP PMF, when Evidence 3 is entered in 
the network, shows a reduction of probability of occurrence in the [0.05 0.10] m state and an 
increasing of probability of occurrence in correspondence of the state [0 0.05] m, indicating that the 
PMF is moving slightly back. This can be explained by observing the evolution of the PMF relative to 
the Joyner-Boore distance when Evidence 2 and Evidence 3 are entered in the network (Fig. 5.3 (b)). 
 
 

 
 

 
 
 
 
 
 

 
 

 

                                           (a)                                                                                     (b) 
Figure 5.3. Rupture Area and Joyner-Boore distance PMF (prior and posterior) 

 
When Evidence 2 becomes available, the probability to have Rjb in the interval [0-1.6] km is about 
44% and the probability to be in the next interval (i.e. [1.6 3.2] km) is 57%, with negligible probability 
to be in the interval [3.2 4.8] km. When information about the rupture area is introduced in the BN 
(Evidence 3), the probability to be in the [0-1.6] km interval decreases to 25%, and the probability 
relative to the next interval rises to 75%. The higher probability in the second Rjb state, with respect to 
the probability observed in Evidence 2, leads to a decreasing of probability of occurrence for the state 
[0.05 0.10] m of EDP from 46% to 44% for Evidence 3 and an increasing probability in the [0 0.05] m 
state, from 37% to 41%. As expected, the same effect can be observed in EDPLS. 
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                                            (a)                                                                                  (b) 
Figure 5.4. Engineering Demand Parameter and relative limit states PMFs (prior and posterior) 

 
At each evidence case, the INSPECTION node can be observed (Fig. 5.5). This node provides the 
results in terms of losses (e.g. normalized monetary losses) associated to both the real damage state of 
the structure and the decision to perform or not the inspection before the final decision. As can be seen 
in Fig. 5.5(a), the decision to inspect the bridge, before establishing the final decision, is preferred 
because it leads to lower loss than the opposite alternative. The optimal decision provided by the 
network is followed: and the decision-maker decides to inspect the bridge. At this point, the PMF of 
the possible answer of the expert is given based on the PMF relative to the real damage state of the 
bridge and the nature of the expert. The EXPERT node is defined as a function using a test-likelihood 
matrix relative to the confidence of the test relative to the inspector that is going to verify the bridge 
damage condition. The results obtained in this example are given in Fig. 5.5 (b). 
 
 

 
 

 
 

 
 
 

 
 

(a)                   (b) 
Figure 5.5. Losses relative to inspection and EXPERT PMF (prior and posterior) 

 
As a final step, it is assumed that the information is received that the vertical elements show concrete 
splitting failure (Evidence 5). The results for the final decision in terms of losses (Operative?, Partially 
Operative?, Inoperative?) are then provided by the BN and shown in Fig. 5.6.  
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Figure 5.6. Evaluation of losses for the definition of final/optima decision 



 

 

The final decision is based on direct and indirect losses related to the possible decision that the 
decision maker can make in the decision phase. As can be seen, the optimal decision for the example 
proposed herein is to close the bridge, yielding reduced losses when compared with the other options. 
 
 
6. CONCLUSIONS 
 
The BN methodology is an intuitive and valid tool for the management of the risk in the immediate 
aftermath of an earthquake because of its capability to be updated with different kinds of information, 
in any direction. In addition, BNs can be both predictive and diagnostic. Furthermore, the use of a 
graphic language, leads to an easy communication between the analyst and the decision-maker. 
 
In the future many other aspects in the BN context can be included and investigated. For instance, in 
the definition of the proposed BN framework, a BN-based seismic source model is introduced. This 
model is based on some assumptions useful for the construction of the network. The proposed 
assumptions can be modified and improved in future development of the framework, such as with the 
inclusion of the directivity.  
 
In terms of improving the BN framework, it would be possible to introduce the effect of aftershocks 
on the monitored structures. This additional step includes the definition of predictive relationships for 
the definition of the response of structures already damaged by the main shock and subjected to 
subsequent aftershocks. 
 
In future developments, it will be useful to integrate the proposed BN framework with other 
applications able to automatically introduce the external information into the network. This 
information can be derived from accelerometers, transducers and health monitoring sensors placed on 
the structure. In addition applications producing graphs and prioritizing lists can be useful for practice 
as proposed in Bensi (2010). 
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