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SUMMARY: 

A novel modelling approach is presented for the seismic risk assessment of frames with stochastic system 

properties. The proposed modelling is based on a mixed fiber beam-column finite element (FE), whose 

kinematics follow the natural mode method. The FE formulation allows consistently varying the uncertain 

system properties, which are described by homogeneous non-Gaussian translation stochastic fields. As uncertain 

parameters we consider the stiffness and the strength of the frame beams and columns. Aleatory uncertainty in 

the loading can be taken into account using both natural and synthetic ground motion records. The proposed 

method is used to compute the nonlinear stochastic response and reliability of a three-storey steel moment-

resisting frame using Monte Carlo simulation. Useful conclusions are provided regarding the effect of the 

spectral characteristics of the stochastic fields on the response variability and reliability of the structure. 
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1. INTRODUCTION 

 

The efficient prediction of the nonlinear dynamic response of structures with uncertain system 

properties poses even today a major challenge in the field of computational stochastic mechanics, as 

opposed to the linear case. This can be explained by the fact that most of the methods developed for 

the analysis of linear systems are inefficient or inapplicable to the nonlinear case. For example, the 

analysis of uncertain nonlinear systems is generally not feasible using frequency domain analysis 

techniques (Iwan & Huang 1996). The existing methods for response statistics calculation in this case 

are mostly based on simulation (Schuëller & Pradlwarter 1999, Muscolino et al. 2003), or on the 

perturbation approach (Liu et al. 1986). Applications of the response surface method have also been 

proposed (Huh & Haldar 2001), while studies can be found on the statistical equivalent linearization 

(EQL) method for the response variability and reliability estimation of discrete nonlinear systems 

(Proppe et al. 2003). Alternatively, a probability density evolution method (PDEM) has been 

developed for this purpose (Li & Chen 2006).We assume that the uncertain system properties can be 

described by non-Gaussian translation processes. It is worth noting that this theory is able to deliver 

accurate results for the case of linear and nonlinear dynamic systems assuming stationary output but 

can be easily extended to a special class of non-stationary, non-ergodic output (Field & Grigoriu 

2009). 

 

In order to investigate real-life structural problems subjected to seismic loading, a novel approach, 

combining Monte Carlo simulation and nonlinear response history analysis with the stochastic field 

theory has been recently introduced (Stefanou & Fragiadakis 2009). The proposed methodology is 

used here to assess the response variability and reliability of a benchmark three-storey steel moment-

resisting frame. The structure is modelled with a mixed fiber-based, beam-column element, whose 

kinematics is based on the natural mode method. The adopted formulation leads to the reduction of the 

cost required for the computation of the element stiffness matrix, while increased accuracy compared 

to traditional displacement-based elements is achieved (Papachristidis et al. 2010). The uncertain 

parameters are the Young modulus and the yield stress, both described by homogeneous non-Gaussian 

translation stochastic fields (Grigoriu 1998). Under the assumption of a pre-specified power spectral 



density function of the stochastic fields describing the two uncertain parameters, the response 

variability and reliability of the frame is calculated using Monte Carlo simulation. Finally, a 

parametric investigation is carried out providing useful conclusions regarding the influence of the 

spectral characteristics of the stochastic fields on the response variability 

 

 

2. GROUND MOTION RECORDS 

 

2.1. Set of natural ground motions 

 

As seismic input we use both natural and synthetic ground motions. The set of natural records consists 

of 15 records, divided to three subsets of increasing hazard. i.e. low, medium and high. The records 

chosen differ in terms of amplitude, frequency content, duration, etc and therefore this variability is 

expected to be transferred to the statistics of the analysis, producing significant record-to-record 

variability. 

 

2.2. Stochastic representation of ground motions 

Apart from natural records, it is also possible to generate synthetic ground motions using a simple 

process that has been proposed by Mavroeidis & Papageorgiou (2003). Τhis approach, allows to 

combine independent models that describe the low-frequency (long period) component, with models 

that describe the high–frequency component of an acceleration timehistory. A successful application 

of this approach is given in Taflanidis et al. (2008). The generation of the high-frequency component 

is based on the stochastic (or engineering) approach discussed in detail in Boore (2003). Based on a 

given magnitude-distance scenario (Mw-R) and depending on a number of site characteristics, the 

stochastic approach produces synthetic ground motions. The detailed description of the stochastic 

approach is beyond the scope of this paper. The long-period component is based on the model of 

Mavroeidis & Papageorgiou (2003). This model is based on an expression that has been calibrated 

using actual near-field ground motions from all-over the world. Therefore, the velocity pulse of a 

record is given by the expression: 
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where Ap, fp, vp, γp and t0 describe the signal amplitude, prevailing frequency, phase angle, oscillatory 

character (i.e., number of half cycles) and time shift to specify the epoch of the envelope’s peak, 

respectively. All parameters of Eqn. (2.1) have a clear and unambiguous meaning. Depending on the 

magnitude-distance scenario (Mw-R) examined, the pulse amplitude Ap and frequency fp are given by 

the expressions of Rupakhety et al. (2011). Thus, the mean Ap value is obtained as:  

 2 2
log( ) 5.17 1.98 0.14 0.10 log 0.562

w wpA M M D          (2.2) 

where Mw=min(Mw, Msat) and Msat=7.0. Similarly, the mean pulse frequency fp is:  

log( ) 2.87 0.471
wp Mf      (2.3) 

Eqns (2.2) and (2.3) use base 10 logarithms and the standard deviation of the logarithms is 0.16 and 

0.18, respectively. 



 

Figure 2.1. Generation of synthetic ground motion records. 

The low and high frequency components are combined through the following steps: 

1. Sample the moment magnitude Mw and distance R. Assume that the logarithms follow a normal 

distribution, with mean values provided by Eqn. (2.2) and (2.3) and standard deviation given by 

Rupakhety et al. (2011). 

2. Apply the stochastic method to generate an acceleration timehistory to use as the high-frequency 

component. 

3. Generate a velocity pulse using Eqn. (2.1). Shift the pulse so that its maximum velocity coincides 

in time with the maximum of the velocity time history of the high-frequency record of Step 2. 

4. Calculate the Fourier transform of both high and low frequency time histories.  

5. Subtract the Fourier amplitude of the pulse from that of the ground motion. 

6. Construct a synthetic acceleration time history so that its Fourier amplitude is that of Step 5 and its 

phase is that of the high-frequency record of Step 2. 

7. The final synthetic record is obtained by adding the pulse time history and the time history of Step 

6.  

The procedure is shown schematically in Figure 2.1. The last column shows the acceleration and 

velocity spectra, where the effect of the pulse on the spectrum of the outcome timehistory is evident. 

 

 

3. FINITE ELEMENT FORMULATION 

 

3.1. Force-Based Formulation of the Beam-Column Element 

 

Inelastic analysis of frame structures can be performed either with a lumped or with a distributed 

plasticity formulation. Distributed plasticity elements are considered more accurate and, in general, are 

distinguished to displacement-based and to force-based elements. The latter approach, also known as 

flexibility formulation, has a number of distinct features over the former, especially if it is adopted in 

the framework of a mixed beam-column formulation (Spacone et al. 1996). The force-based 

formulation requires a single beam-column element per member to simulate its material nonlinear 



response, since it uses force interpolation functions. Consequently, the element equilibrium is always 

satisfied, while the compatibility of deformations is satisfied by integrating the section deformations to 

obtain the element deformations and the nodal displacements. In order to numerically calculate the 

stiffness matrix, a number of sections along the beam-column element are chosen, while every section 

is divided to a number of monitoring sections, known as fibers. Fibers are simply integration points of 

a low order quadrature at the section level and are used to evaluate the section stiffness as follows: 
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where y is the distance of a fiber from the neutral axis, Dsec are the section forces and dsec=[εx, κ]
T
 is 

the vector of section deformations that consists of the axial strain εx and the curvature κ. If the 

response is linear elastic, the diagonal terms of the section stiffness matrix become equal to EA and EI, 

respectively, while the off-diagonal terms are zero. If the section flexibility matrix is 
1

sec sec

f k , the 

element flexibility matrix F=K
-1

 is obtained as follows: 

1 1
1 1

sec sec sec
1 1

1

( ) ( ) ( )
NP

T T T

i i i i

i

dξ = dξ = w    

 


   F K b k b b f b b f b  (3.2) 

The above equation implies that numerical integration is required in order to obtain the element 

flexibility matrix, where NP is the number of integration points along the element. In force-based 

elements, the Gauss-Lobatto quadrature is preferred because it considers as sections of integration the 

beam ends where the bending moment is maximum, provided that no other element loads are present. 

This integration scheme requires at least three integration sections, while typically four to six sections 

are chosen. 

 

The kinematics of the element used in this study follow the principles of the natural mode method 

proposed in Argyris et al. (1988). According to the natural mode method, the displacement field can 

be decomposed into three rigid body modes ρ0 and three straining modes ρN shown in Fig. 3.1. In a 

flexibility-based element, the calculation of the natural element forces is performed iteratively for 

every element. The first step of the iterative procedure is to determine the vector of the natural forces. 

Then using force interpolation functions, the section forces are obtained and subsequently they are 

corrected according to the constitutive law. The section deformations are obtained from the corrected 

forces using Eqn. (3.1) and are then integrated according to: 

1

sec
1

( )T= dξ
ρ b d  (3.3) 

in order to obtain the residual natural modes. b is the interpolation matrix, which is a function of the 

natural coordinate ξ  [-1,1] along the element. The iterative process in the element level is terminated 

when a convergence criterion is satisfied. 

 

 
ρN1 extension 

 

ρN2 symmetric bending 

 

ρN3 antisymmetric bending 

Figure 3.1. Natural straining modes. 



 

3.2. Stochastic Stiffness Matrix 

 

In the context of stochastic finite element analysis, the uncertain system properties are usually 

represented by stochastic fields (Stefanou & Papadrakakis 2004). The statistical properties of these 

fields are based either on experimental measurements or on an assumed variation. In this work, the 

Young modulus E and the yield stress σy of the structure are assumed to be described by two 

uncorrelated 1D-1V homogeneous non-Gaussian stochastic fields: 

   0 11E x E f x     (3.4) 

   0 21y yσ x σ f x     (3.5) 

where E0 is the mean value of the Young modulus, σy0 is the mean value of the yield stress of the 

material and f1(x), f2(x) are two zero-mean non-Gaussian homogeneous stochastic fields corresponding 

to the variability of the Young modulus and the yield stress, respectively. Since the entries of the 

element flexibility matrix are nonlinear functions of the uncertain material properties, it is not possible 

to establish a closed form expression for the stochastic flexibility matrix. However, an analytical 

expression of the section stiffness matrix with stochastic material properties can be derived, see 

Stefanou & Fragiadakis (2009). The stochastic element flexibility matrix of the beam-column element 

is calculated numerically using its deterministic formulation and the stochastic stiffness. 

 

 

4. SIMULATION OF NON-GAUSSIAN SYSTEM PROPERTIES 

 

In this paper, a non-Gaussian assumption is made for the distribution of the uncertain parameters of 

the frame. This choice is in accordance with the fact that several quantities arising in practical 

engineering problems (e.g. material and geometric properties of structural systems, soil properties, 

wind loads, waves) are found to exhibit non-Gaussian probabilistic characteristics. In addition, the 

non-Gaussian assumption permits to efficiently treat the case of large input variability without 

violating the physical constraints of the material properties. 

 

A number of studies in the literature have been focused on producing a realistic definition of a non-

Gaussian sample function from a simple transformation of an underlying Gaussian field with known 

second-order statistics. Thus, if g(x) is a homogeneous zero-mean Gaussian field with unit variance 

and spectral density function (SDF) Sgg(κ), a homogeneous non-Gaussian stochastic field f(x) with 

power spectrum ( )T

ffS   is defined as: 

 

    1
f x F g x


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where Φ is the standard Gaussian cumulative distribution function and F is the non-Gaussian marginal 

cumulative distribution function (CDF) of f(x). The transform 
1F    is a memory-less translation 

since the value of f(x) at an arbitrary point x depends on the value of g(x) at the same point only and 

the resulting non-Gaussian field is called a translation field (Grigoriu 1998). Translation fields have a 

number of useful properties such as the analytical calculation of crossing rates and extreme value 

distributions. 

 

In the present work, Eqn. (4.1) is used for the generation of non-Gaussian translation sample functions 

representing the uncertain system properties. Sample functions of the underlying Gaussian field g(x) 

are generated using the spectral representation method (Shinozuka & Dedoatis 1991). In order to 

investigate the effect of correlation structure on the results, two types of SDF of g(x) with spectral 

power concentrated at zero frequency and also shifted away from it, are used in the numerical 
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where σg is the standard deviation of g(x) and b denotes the parameter that influences the shape of the 

spectrum and is proportional to the correlation length of the stochastic field along the x-axis. In 

general, the SDF of the translation field obtained from Eqn. (4.1) will be different from Sgg(κ). Using 

the procedure described in this section, a large number of non-Gaussian sample functions are produced 

and used in MCS to compute the response variability and reliability of the frame. 

 

 

5. NUMERICAL EXAMPLE 
 

The three-storey steel moment-resisting frame shown in Fig. 5.1 is used for a numerical 

implementation of the methodology described above. The frame has been designed for a Los Angeles 

site, following the 1997 NEHRP (National Earthquake Hazard Reduction Program). The dynamic 

response of the building is dominated by the fundamental mode which has a period value equal to 

T1=1.02 sec when the mean value of the modulus of elasticity is used. All response history analyses 

were performed using a force-based, beam-column fiber element with five integration sections 

implemented on a general purpose finite element program (Taylor 2000). Geometric nonlinearities 

were not considered in the analysis. Rayleigh damping is used to obtain a damping ratio of 2% for the 

first and the fourth mode. The material law is considered to be bilinear with pure kinematic hardening, 

where the properties of each integration section differ according to the stochastic fields of Eqn. (3.4) 

and (3.5). The frame section properties are given in Table 5.1. The gravity loading applied is 

32.22kN/m for the first two stories and 28.76kN/m for the top storey. These values are used also to 

obtain the nodal masses resulting to a lumped mass matrix. The results shown here have been obtained 

using the ground motions of section 2.1. 

 

Figure 5.1. The three-storey LA3 steel frame. 

The spatial variability in Young modulus and yield stress of the frame is described by two 

uncorrelated 1D-1V homogeneous non-Gaussian translation stochastic fields with zero mean and 

coefficient of variation (COV) equal to 0.10. A slightly skewed shifted lognormal distribution defined 

in the range [-1,+ ] is assumed for the two stochastic fields. The skewness of the lognormal 

distribution is equal to 0.30. E and σy are simultaneously varying in all the cases examined. The 

representative response quantity whose statistics are monitored is the maximum interstorey drift, 

which for brevity will be simply referred as drift and denoted as θmax. This parameter is a well-known 

engineering demand parameter (EDP) that captures the seismic demand and its distributions along the 

height of the structure. The response statistics have been calculated using 1000 Monte Carlo 

simulations. 
 

The sensitivity of θmax with respect to the scale of correlation of the stochastic fields, quantified with 

the aid of the correlation length parameter b of the underlying Gaussian field, is examined for the 

ground motions of the three sets. For this purpose, several sets of sample functions of E and σy are 



generated using Eqn. (4.1) each for a different value of parameter b. Six representative values of b 

varying from weak to strong correlation are considered (b = 0.2, 1.0, 2.0, 10, 20 and 100). 

 
Table 5.1. The section properties of the frame. 

Storey Beams 
Columns 

Exterior Interior 

1 W 30×118 W 14×257 W 14×311 

2 W 30×116 W 14×257 W 14×311 

3 W 24×68 W 14×257 W 14×311 

 

The dynamic response of the frame is highly non-stationary as it can be seen in Fig. 5.2 where the 

evolution with time of the mean and the COV of θmax are depicted for two correlation length values 

and for a record of medium intensity. An important observation can be made regarding the variability 

of θmax. In contrast to the static case where the displacement variability shows always the same trend, 

starting from small values for small correlation lengths corresponding to white noise stochastic fields 

up to large values for large correlation lengths (Stefanou & Papadrakakis 2004), the COV of θmax 

varies significantly not only with the correlation length b but also in different ways among the records 

of the same intensity level (Fig. 5.3). In some cases, the effect of b becomes negligible and then the 

record-to-record variability is predominant (e.g. records 1/1, 5/1 and 3/3). In addition, a large 

magnification of uncertainty is observed in some cases, which is more pronounced for records 1/1, 4/1, 

4/2 and 5/2, where the response COV tends to values that are 1.4-1.8 times greater than the 

corresponding input COV(=0.1). When stochastic earthquake loading is considered in addition to 

uncertain system properties, the magnification of uncertainty becomes even more pronounced. In 

contrast, the mean value of drift, although presenting an important record-to-record variability, is 

practically not affected by the correlation length parameter b (not shown). 

 

 

Figure 5.2. Time histories of mean, COV(θmax) – lognormal distribution of E, σy for a single record.  

The time histories are shown for b=2.0 and 100. 

 

Figure 5.3. COV(θmax) for different values of correlation length parameter b. 

  



Using the results obtained in this section, the reliability of the frame can finally be calculated. Fig. 5.4 

shows the CDF of θmax (for a single record) for b=1and 100. If the reliability of the frame is defined as 

the maximum interstorey drift not exceeding a threshold e.g. 6.510
-3

, the reliability can be obtained 

from Fig. 5.4 for both cases of b as 0.915 and 0.555, respectively. It is worth noting that the reliability 

is substantially smaller in the second case. Fig. 5.5 shows the probability density function (PDF) of 

θmax for the same two values of b, computed using the kernel density estimation method (Bowman & 

Azzalini 1997). Simultaneously shown are the normal and lognormal distributions with a mean and 

standard deviation identical to those of the computed PDF, and the extreme value distribution with the 

same mean as that of the computed PDF. It can be observed that these widely adopted probability 

distributions are quite different from the real PDF of the response, which clearly has a bimodal form 

especially in the case of small correlation length. 
 

  
(a) (b) 

Figure 5.4. CDF of θmax of record 4/2 for correlation length parameter: (a) b=1 and (b) b=100. 
 

  
(a) (b) 

Figure 5.5. PDF of θmax of record 4/2 for correlation length parameter: (a) b=1 and (b) b=100. 

 

 

5. CONCLUSIONS 

 

A stochastic response history and reliability analysis of a steel frame having uncertain non-Gaussian 

material parameters and subjected to seismic loading has been performed. The frame is modeled with 

a mixed fiber-based, beam-column element, whose kinematics are based on the natural mode method. 

The adopted formulation provides increased accuracy compared to traditional displacement-based 

elements and offers significant computational advantages for the analysis of systems with stochastic 

properties. Two uncorrelated 1D-1V homogeneous non-Gaussian translation stochastic fields with 

prescribed marginal CDF and SDF have been used for the description of the random spatial fluctuation 

of the material properties. The variability of the maximum interstorey drift θmax and the reliability of 

the frame have been computed using MCS. 
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A parametric investigation revealed the significant influence of the scale of correlation of the 

stochastic fields (quantified via the correlation length parameter b) and of the different seismic records 

on the response variability: the COV and skewness of θmax have been found to vary quantitatively with 

b and in many different ways between the records of the same intensity level. Finally, a large 

magnification of uncertainty has been observed in some cases, leading to response COV values that 

were 1.4-1.8 times greater than those of the input COV. This magnification of uncertainty can be even 

more pronounced when stochastic earthquake loading is considered in addition to uncertain system 

properties. These observations underline the importance of a realistic uncertainty quantification and 

propagation in nonlinear dynamic analysis of engineering systems. 
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