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SUMMARY: 
Structural tests using dynamic substructuring methods require a robust controller to synchronise the numerical 
and physical responses, and a stable and accurate algorithm to simulate the numerical components. The proposed 
new substructuring strategies use real-time finite element methods to guarantee modelling accuracy and 
output-based controllers to achieve robust synchronisation. Output-based controller design is generic and 
requires no a priori information of the specimen’s dynamics. A beam-spring-damper system is developed as an 
example for illustration of the concepts, where the beam is simulated numerically and the spring-damper is tested 
physically. Iterative design procedure is required in order to achieve a trade-off between mesh density and 
sampling time. The result of this work offers the prospect of testing engineering systems with large-dimension or 
multiple finite element components in the future. 
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1. INTRODUCTIONEQUATION SECTION (NEXT) 
 
World-wide interest in advanced dynamic testing techniques has been expedited by issues and 
concerns about efficiency, cost-reduction, safety, and sustainability of a broad range of engineering 
systems. Hybrid experimental method of dynamically substructured systems (DSS) or dynamic 
substructuring is proposed for structural testing (Horiuchi et al., 1999). During a DSS process, the 
critical (nonlinear) specimens are physically tested, and together with additional actuators (GTS) are 
called physical substructures (ΣP). The remaining and well-understood components are simulated in 
real time as numerical substructures (ΣN). Thus, DSS testing environment enables the ΣP design to be 
rectified and optimised, resulting in deeper insights into critical parameters, before the products are 
actually manufactured and implemented.  
 
To pursue the success of DSS tests, a high-fidelity and robust controller is required to synchronise the 
ΣN and ΣP outputs, and a fast, stable, and accurate numerical algorithm is essential to model the 
numerical components. As a result, this work proposes relatively new substructuring strategies, with 
the synchronisation robustness being assured by output-based (OB) controllers and the simulation 
accuracy by the finite element methods (FEM). 
 
Finite element (FE) analysis is widely applied in the simulation studies of structural, automotive, and 
aircraft systems. In the analysis, a component is meshed by a number of elements, and thus a 
continuous equation of motion is solved and transformed into discretised equations. Simulation 
accuracy can be promoted by refining the mesh diagram or selecting higher-order polynomials. 
However, using the FEM for dynamic substructuring may cause the following concern: (1) the mesh 
density related to simulation accuracy relies on computational capacity; (2) computer-aided 
engineering tools, such as ANSYS, cannot be implemented in a real-time process. These issues render 
the FEM is rarely discussed in the DSS literature, except Shing et al. (2004), Wang et al. (2006), and 
Stauffer et al. (2007). Since the issue of computation load related to mesh density can be mostly 
solved by using higher-level computation technologies, such as super computers and Mathworks XPC 



target, in this phase, we emphasise the research work on the technical and theoretical issues of 
integrating the FEM and OB controllers in a real-time process. 
 
The content of this paper is structured as follows. In Section 2, the innovative OB strategies are 
presented based on a substructured framework, including the synthesis of OB substructured dynamics 
and controllers. Control systems can be designed in transfer-function (TF) or state-space (SS) forms, 
depending on the implementation condition. Section 3 introduces a beam-spring-damper (BSD) 
structure as an example to construct the FE emulation in ANSYS and in Matlab/Simulink. The BSD 
system is decomposed into two substructures in Section 4, where the beam is modelled numerically 
using the FEM and the spring-damper device is tested physically, followed by the associated dynamics 
and control synthesis. Section 5 compares the results of the ANSYS simulation v.s. the real-time FE 
and OB substructuring methods. Finally, conclusion and future work of a new FE substructuring 
scheme are drawn in Section 6. 
 
 
2. THE OUTPUT-BASED DYNAMICALLY SUBSTRUCTURED SYSTEMS 
Equation Section (Next) 

 
 

Figure 1. The proposed output-based substructured framework 
 
A substructured framework is shown in Fig. 1, which displays the essential signal flows and 
components within DSSs. Signals {zN, zP} in Fig. 1 indicate the outputs of {ΣN, ΣP} at the 
substructured interface, to be synchronised via the action of a outer-loop DSS control signal, labelled 
by u. A robust DSS controller can ideally drive the substructured error to zero (xe = zN – zP, xe → 0). 
Note that ΣN1 and/or ΣP2 can contain more than one substructure, i.e. multi-input-multi-output systems, 
so that the signals {dN, dP, u, yi, xe, zO, zN, zP} can be vectors. The detailed introduction to the 
substructured framework can be referred to Tu and Jiang (2012). 
 
The OB framework (Tu, 2012) proposes that only the nominal model of GTS and the outputs of {ΣN, ΣP} 
are considered in the synthesis procedure of DSS dynamics and controllers, regardless of the 
parameters and inputs related to {Σ1, Σ2}. Thus, {Σ1, Σ2, dN, dP, yi, zO} are depicted by dotted lines in 
Fig. 1, assumed to be completely unknown by the OB controllers, and {Σ1, Σ2} can contain nonlinear 
components. It is to be noted that the OB control scheme has been adopted implicitly in some 
delay-compensation research, e.g. Darby et al. (2002) and Wallace et al. (2005). 
 
Since the OB controllers do not require knowing the dynamic expression for Σ1, it is advantageous for 
testing Σ1 with complexity and is adopted in this work for FE dynamic substructuring. In the following 
sections, the OB substructured dynamics will be derived and fit into the framework in Fig. 1, using TF 
and SS descriptions. To be noted that, although the TF and SS dynamics and controllers are derived 
from an identical linear model of GTS, the resulting gain synthesis and implementation conditions are 
different and one representation cannot be fully transformed into the other. 



 
2.1. The OB substructured framework and control system in TF form 
 
First, the generalised models and outputs of {ΣN1, ΣP2} can be expressed by (Tu, 2012) 
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where {GdN(s), GiN(s), GdP(s), GP(s)} are the input TFs associated with {dN, yi, dP, zP}, respectively, 
and zP is the GTS output to be synchronised with zN. The signal yi is fed back from ΣP2 to ΣN1 in real 
time, in order to compute the next time step response of zN. 
 
The nominal models of {ΣN1, ΣP2} are expressed in Eqns. 2.1-2.3. However, referring to the OB 
scheme and Fig. 1, the OB substructured error dynamics can be derived irrespective of the {Σ1, Σ2} 
parameters. Simply subtracting Eqn. 2.3 from zN(s) results in the OB error dynamics 
 

N P N TS( ) ( ) ( ) ( ) ( ) ( )ex s z s z s z s G s u s= − = −  (2.4) 
 
where the signal zN is always measurable from the simulation loop of ΣN1, and zP is essentially 
measurable via sensor devices. 
 
The objective of substructuring control is to drive the error dynamics in Eqn. 2.4 to zero (xe → 0), 
ensuring that {zN, zP} are robustly synchronised. Accordingly, the OB linear substructuring controller 
(O-LSC) is proposed as 
 

N N( ) ( ) ( ) ( ) ( )eo eu s K s z s K s x s= +  (2.5) 
 
where KN(s) and Keo(s) are the feedforward and feedback gain matrices, respectively. Substituting 
Eqn. 2.5 into Eqn. 2.4 yields the following closed-loop error dynamics and the KN(s) design 
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Eqn. 2.6 reflects two parts of control policy, with the first part of the solution, KN(s), for disturbance 
cancellation and the second, Keo(s), for closed-loop stability. Ideally, KN(s) can cancel the unwanted 
error dynamics, if the GTS parameters are exactly known. In the presence of parameter variations 
within GTS, Keo(s) needs to be designed, for example, using the roots’ loci method (Stoten and Hyde, 
2006). Eqns. 2.4-2.7 explicitly use a deductive approach to verify that the primary objective of 
open-loop and OB substructuring control is to negate the additional GTS dynamics using a 
model-inversion controller. 
 
2.2. The OB substructured framework and control system in SS form 
 
Complete SS representation of {ΣN1, ΣP2} are addressed in Tu (2012), and this section focuses on using 
the OB strategy to derive the SS models and controllers. The parameters and signals associated with 
{Σ1, Σ2} are not required to be known by the controllers; as a result, the SS equation for GTS, or the 
output dynamics of ΣP2 is expressed by 
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where Eqn. 2.8 is a SS model including the GTS parameters only, xP1 is the synchronised state, and xP2 
contains the remaining state of GTS, irrespective of Σ2. Therefore,  can be extracted from Eqn. 2.8 
as follows 
 

P1 P11 P1 P12 P2 P 1ux A x A x B u= + +  (2.10) 
 
Subtracting Eqns. 2.8 from  yields the following OB error dynamics 
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To ensure successful substructuring tests, the error dynamics must be driven to zero, via the action of 
OB controllers. Thus, the corresponding control law and gains are proposed as 
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called output-based state-space linear substructuring controller (O-SSLSC). The feedforward gain 
matrices, {KN1, KN1d, KP2}, are designed to cancel the unwanted dynamics within xe, where the states 
{xN1, } are measurable from the ΣN1 simulation, and xP2 can be estimated using filter designs. 
Feedback gain, Keo, is designed for closed-loop performance, using the robust eigenstructure 
assignment technique (Kautsky and Nichols, 1985), for example. 
 
Compare Eqns. 2.5 and 2.7 with Eqns. 2.12 and 2.13, although the underlying GTS models are identical 
in the O-LSC and O-SSLSC designs, the resulting gain synthesis are not fully equivalent. State 
feedback of {xN1, , xP2} to O-SSLSC generates a richer feedback environment, such that O-SSLSC 
would provide a better synchronisation accuracy than O-LSC. 
 
 
3. THE EMULATED BEAM-SPRING-DAMPER SYSTEMEQUATION SECTION (NEXT) 
 
This section introduces the dynamics and modelling of the emulated beam-spring-damper (BSD) 
structure (ΣE). We use the FEM simulation results in ANSYS as the benchmark, called numerically 
emulated responses, in order to compare with the DSS test results in Section 5. 
 
Table 1. Notation and parameters for the BSD DSS 

Parameter Description Value 
L Undeformed length 2 m 
E Young modulus 11 GPa 
b Width 0.2 m 
h Height 0.006 m 
ρ Density 900 kg/s3 
mb Mass 2.2 kg 
k (uncertain) Linearised spring stiffness coefficient 675 N/m 
c (uncertain) Linearised viscous friction coefficient 0.7 Ns/m 
{a, b} Nominal actuator numerator and denominator coefficients {48.6, 49.2} s-1 



 

 

 
 

Figure 2. The scheme of the emulated BSD system and its substructuring (The beam is simulated by the 
real-time FEM in Simulink and the absorber is physically tested.) 

 
As shown in Fig. 2, the BSD structure comprises a cantilever beam with a rectangular cross-section. 
The beam’s both ends are rigidly fixed, and the middle is coupled with a spring-damper device, which 
is mounted to a solid foundation and acts as a passive vibration absorber. Here, the isolated beam is 
modelled using the Euler-Bernoulli theory, assuming that the shear force and normal deformation are 
negligible (Fagan, 1997). Therefore, the fourth-order model of the BSD system is written as 
(Kyrychko et al., 2007) 
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where w(x, t) describes the lateral deflection of the beam. The deflections are resulted by a lateral 
pointed force, d, which is modelled as a sinusoid and ω is the excitation frequency. Table 1 lists the 
associated parameters of the emulated system. 
 
To solve Eqn. 3.1 using the FEM, the beam is meshed with m elements, as shown in Fig. 2. Hermite 
shape functions (Rogers and McCulloch, 1994) are applied to approximate the nodal displacements of 
each element, yielding the local stiffness and mass matrices. These local matrices are assembled to 
form the global mass and stiffness matrices {M, K} as follows 
 

MX KX F+ =  (3.2) 
 
where X = [x1, x2,.., x2i-1, x2i,.., x2m-1, x2m]T is a vector with x2i-1 (i = 1 ~ m) being the nodal displacement 
and x2i being the slope of nodal rotation. In addition, the forces applied to each element are arranged in 
a global vector, labelled as F. In this example, F includes the sinusoid loading (d) and the interaction 
force from the absorber (f), which is expressed by 
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Accordingly, the solution vector typically yields 
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Fixed boundary conditions of the first and mth element are applied to the relevant entries in Eqn. 3.4, 
with xi = 0 and dxi/dt = 0 (i = 1 and m). A large stiffness value is imposed to the (m - 1)th node 
following the penalty approach, to ensure only the unidirectional motion (Rahman and Davies, 1984; 
Dussault, 1995). 
 
In the ANSYS emulation, the beam’s aspect ratio is set to 0.1 according to the Euler-Bernoulli theory 
assumption, and the beam is meshed by m segments, modelled by the BEAM3 element. The vibration 
absorber is simulated using the COMBIN14 element, where the linearised {k, c} coefficients are 
obtained from a primary system identification test prior to the DSS experiments. Boundary conditions 
of zero-degree-of-freedom are assigned to the first and last nodes, and the y-direction displacements 
are permitted for the remaining nodes. As a result, the maximum displacement of each node can be 
extracted from the “time history variables” window and that completes the ANSYS modelling. 
 
 
4. THE DEVELOPMENT OF THE OB BSD DSS 
Equation Section (Next) 
According to Fig. 2, at the substructured interface where the beam and vibration absorber are 
connected, the BSD system is decomposed into two subcomponents: the beam (Σ1) and the vibration 
absorber (Σ2). The beam’s dynamics are relatively well-understood, thus computed by the FEM in 
Simulink as the numerical substructure (ΣN1). A numerical excitation force (dN) is imposed on ΣN1. 
Critical and uncertain spring-damper vibration absorber requires physical experiments; its one end is 
fixed and the other mounted to an actuator with a load cell. The absorber together with the 
electric-mechanical actuator (GTS) is denoted as ΣP2. The interaction force (fP = yi) measured by the 
load cell is fed back from ΣP2 to ΣN1, acting as the constraint signal. Fig. 5 in Tu and Jiang (2012) 
displays the ΣP2 test rig. In this manner, the FE substructure (ΣN1) in Simulink calculates real-time 
nodal responses, subject to dN and yi. The nodal displacement of ΣN1 at the interface, zN, needs to be 
synchronised with the GTS output, zP, by the action of the OB controllers. 
 
4.1. The synthesis of substructured dynamics in TF and SS forms 
 
To gain a comprehensive understanding of the DSS dynamics and to develop the FE simulation in 
Simulink, the ΣN1 model of the entire BSD DSS is derived first, leading to the synthesis of OB 
dynamics and controllers. With reference to Eqns. 3.2 and 3.4, the expressions for ΣN1 are given by 
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where XN = [xn1, xn2,.., xn(2i-1), xn(2i),.., xn(2m-1), xn(2m)]

T is the numerical solution vector, xn(2i-1) is the nodal 
displacement, and xn2i is the slope of nodal rotation. In addition, FN is the numerical force vector 
including dN, and FP is the physical force vector including the constraint signal fed back from ΣP2. In 
terms of the ΣP2 expression, typically the actuator dynamics are approximated by a first-order model as 
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where zP is the GTS output to be synchronised with zN, and the values of {a, b} are identified in Table 1. 
Accordingly, the synchronised output, zN = xn(m-1) = xN1, at the substructured interface can be extracted 
from XN. The resulting OB error dynamics in TF and SS forms are synthesised by subtracting 



Eqns. 4.2 and 4.3 from zN and , respectively, as follows 
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Eqns. 4.4 and 4.5 are used to design and synthesise the OB controllers in the next section. 
 
4.2. The synthesis of OB controllers in TF and SS forms 
 
Successful DSS tests require the {zN, zP} signals at the interface to achieve exactly synchronised 
responses, ensuring that xe is driven to zero. Thus, according to Eqns. 4.4 and 4.5, the control 
equations are proposed with reference to Eqns. 2.5 and  2.12. Considering the O-LSC design first, 
since GTS

-1 associated with Eqn. 4.4 represents a non-proper transfer function and is 
non-implementable, an inverse dynamics compensation method via real-time simulation loop (IDCS) 
method (Tu, 2006) is used to model GTS

-1 in a straightforward manner. The IDCS loop can be 
considered as a controller equivalent to KN(s), generating a noise-free feedfoward control signal, and 
the resulting control system is denoted as O-LSC-IDCS. On the other hand, the O-SSLSC control law 
is modified from Eqn. 2.12, where the KP2 gain is not required due to a reduced-order model of GTS. 
Substituting Eqn. 2.12 into Eqn. 4.5, the homogeneous error equation is obtained via the following 
choice of gains 
 

N1 N1/ 0.99;    1/ 0.02dK a b K b= = = =  (4.6) 
 
It is evident from Eqn. 4.6 that, the feedforward gain expressions are irrespective of the parameters in 
Σ1 and Σ2, corresponding to the principle of OB substructuring strategies. The feedback gains of 
Keo = 0 and Keo = 1.2 are selected for implementation studies, in both the O-LSC-IDCS and O-SSLSC 
cases. 
 
 
5. IMPLEMENTATION STUDIESEQUATION SECTION (NEXT) 
 
5.1. Implementation results 
 
Introduction to the testing rig can be referred to Section 4.2 in Tu and Jiang (2012). Real-time FEM 
simulation and DSS controllers were implemented via an outer-loop dSPACE® 1104 system. 
Selection of the mesh number required an iterative procedure to reach a satisfactory design that 
provided a trade-off between conflicting objectives of numerical accuracy, sampling time (ts), and 
noise sensitivity. After a number of design iterations in ANSYS, Simulink, and dSPACE, the mesh 
number was ultimately selected as m = 8 for a preliminary investigation, resulting in ts = 0.003 s. 
Compare with the fast hybrid testing by Stauffer et al. (2007) using OpenSees (m = 10 and ts = 0.01 s), 
this experimental work provided faster sampling time, and the signals were transferred in real time 
between the computer, dSPACE, actuator, and sensor. Sinusoid excitation with an amplitude of 40 N, 
a frequency of 0.25 Hz, over a test span of 30 s, was chosen as dN. The excitation was ramped by 3 s.  
 
The benchmark of the numerically-emulated results given by ANSYS are plotted in Fig. 3 and labelled 
as zEA, which exhibit the maximum amplitude of zEA is ~1.23 cm. In addition, the DSS testing results 
are also displayed in Fig. 3, where the three plots {zEA, zN, zP} have similar maximum magnitudes, 
implying the consistency of simulation and testing results. Furthermore, although the controller 
designs are not exactly the same, nearly perfect synchronisation responses and identical trajectory 
patterns are observed in Figs. 3(a)-(d). 
 



 

             (a) O-LSC-IDCS (Keo = 0)                       (b) O-SSLSC (Keo = 0) 

 

             (a) O-LSC-IDCS (Keo = 1.2)                     (b) O-SSLSC (Keo = 1.2) 

Figure 3. Experiment results controlled by O-LSC-IDCS and O-SSLSC 
 

 
 

Figure 4. Integral square error plots 
 
5.2. Discussion 
 
The integral square error (ISE) curves of Figs. 3(a)-(d) are depicted in Fig. 4, for a better comparison 
of the synchronisation accuracy. Although Figs. 3(a)-(d) show almost identical responses, Fig. 4 
highlights that (1) considering the two O-LSC-IDCS-ISE curves, the addition of the feedback gain 
Keo = 1.2 yielded a two-fold ISE increment over the feedforward case, and (2) the O-SSLSC 
outperformed the O-LSC-IDCS in both the feedforward and feedback-controlled cases. A preliminary 
investigation shows that since ΣN1 has fast eigenvalues (Tu and Jiang, 2012), the addition of a 
feedback gain could have increased the noise sensitivity and reduced the synchronised performance. 
This substructurability study will be further addressed in future work. Furthermore, the design of 
O-LSC-IDCS may not be able to ideally model GTS

-1 and result in control errors, while the O-SSLSC 
avoids the model-inversion problem and requires more state information related to {xN1, }, thus 
providing with better synchronisation accuracy. Additionally, it is found that the force signal, fP, fed 
back from the load cell includes spurious noises due to electromagnetic interference. A notch filter 
design for noise suppression will be considered in future work. 
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6. CONCLUSIONS AND FUTURE WORKEQUATION SECTION (NEXT) 
 
6.1 Conclusion 
 
Innovative output-based-finite-element dynamic substructuring strategies are proposed and verified in 
this work, using a beam-spring-damper dynamically substructured system. Output-based control 
designs require only the signals and parameters associated with the actuator, irrespective of the 
physical specimen’s parameters. From this work, it is also observed that (1) the controller designs are 
relatively straightforward, (2) the finite element method has been widely accepted, and (3) fast 
computation technologies are commercially available, and thus the proposed substructuring strategies 
would be theoretically and technically implementable for testing large-dimension engineering systems. 
Experimental studies with changed sampling time, mesh density, penalty numbers comprise the 
ongoing work, in order to quantify an optimal and well-conditioned numerical substructure design. A 
basis on that will combine with substructurability analysis and advanced numerical integration 
algorithms which have been developed in the substructuring literature. 
 
6.2 Future work 
 
On-line calculation of the global matrices and solution vectors burdens the computation load, and thus 
constrains the permissible mesh density and model complexity. To improve the accuracy and speed of 
matrix computation, advanced numerical algorithms can be considered, such as the Gaussian 
elimination methods. On the other hand, based on the real-time dSPACE environment, we also 
propose a multi-finite-element-substructure approach in discrete domain to resolve these problems. 
This concept has been previously discussed, e.g. De Klerk et al. (2008), but is not in the real-time 
substructuring literature. A numerical component can be decomposed into at least two numerical 
substructures, as illustrated in Fig. 2. The weak connections (or the constraint signals) between finite 
element substructures need to be reconstructed. In this manner, the model complexity, mesh density, 
and computation speed can be promoted, as the complete numerical component can be simulated by a 
number of small-size finite element models. This will be a topic of future work, in order to bring 
together the substructuring literature in real-time tests and in finite element analysis. 
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