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SUMMARY 
This paper aims to analytically reveal that how the rigid body motion of the deck in skewed highway bridges is 
affected by seismic pounding during a severe earthquake. For this purpose, a dynamic model with three degrees 
of freedom is developed to model the general dynamic features of skewed highway bridges. Then a parametric 
analysis is performed based on the variations of different parameters including the skewness angle (β), the width 
of expansion joint (gap), and the normalized stiffness eccentricity along the X axis (ex/r). The numerical results 
indicate that seismic pounding has no noticeable effects on the transverse displacement and rotation of the deck 
in straight highway bridges, whereas these responses are considerably increased in skewed highway bridges. 
Furthermore, the amplification of transverse displacements in the acute corners of symmetric and asymmetric 
skewed highway bridges leading to the deck unseating, is more significant than that in the obtuse corners.  
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1. INTRODUCTION 
  
Today, due to the complexity of the interchanges shape and the lack of space in the urban areas, the 
skewed highway bridges are frequently employed to carry traffic in the urban transportation systems 
of metropolises. The irregular geometry of this type of bridge results in a unique seismic response 
during the ground excitation. The investigation of seismic behaviour of the skewed highway bridges in 
past earthquakes reveals that this type of bridge is more susceptible to the seismic damage in 
comparison with the straight highway bridges with regular geometry (Jennings et al, 1971). For 
instance, some damage in skewed highway bridges were reported by Kawashima et al (2010) in the 
recent severe earthquake of Chile on February 27, 2010. In this strong earthquake, Hospital and 
Copihue Overcrossings with skewness angles of about 60° and 45°, respectively, suffered a heavy 
damage because of in-plane rotation of the deck (Kawashima et al, 2010). Fig. 1.1 shows that the 
north-bound skewed bridge of Hospital Overcrossing experienced an irreparable damage due to 
clockwise rotation of the deck, while the south-bound straight bridge remained almost undamaged 
during this strong earthquake. 
 
From a review of the technical literature (Maragakis, 1984, Maleki, 2001 and Tirasit and Kawashima, 
2008), it can be concluded that the coupling of the translational motions of the deck and the seismic 
pounding are the most effective factors affecting the seismic behaviour of this type of bridge. 
Although, numerous studies have been carried out in this field, none of them have considered these 
factors simultaneously in modeling of the skewed highway bridges. For example, Kalantari and 
Amjadian (2010) investigated the effects of coupling of the translational motions and overlooked the 
influence of seismic pounding, whereas Dimitrakopoulos (2011) studied the effects of seismic 
pounding without considering the effects of coupling of the translational motions of the deck.  
 
This paper using a simplified dynamic model, which considers the effects of coupling of the 
translational motions of the deck, investigates the influence of seismic pounding on the linear response 
of the superstructure in a sample skewed highway bridge. The model is based on the previous works of 
authors (Kalantari and Amjadian, 2010, 2011 and Amjadian, 2010).    



 
Figure 1.1. Seismic behaviour of  the north-bound (skewed) and south-bound (straight) of Hospital Overcrossing 

during the Chile Earthquake on 27th  Feb. 2010 (Picture Source: Kawashima et al, 2010) 
 

 
Figure 2.1. The 3DOF simplified model of a skewed highway bridge (β = skewness angle). 

 
 
2. MATHEMATICAL MODELING OF THE PROBLEM 
 
A simplified three degrees of freedom model is developed to model the problem, as shown in Fig. 2.1. 
To simplify the model, it is assumed that the deck remains rigid in its own plane and columns do not 
enter into the nonlinear part of their behaviour during the ground excitation. In the model, β is the 
skewness angle of the bridge, Cm (xm,ym) is the mass centre of the superstructure, and Cs (ex,ey) is the 
stiffness centre of the substructure. The governing equation of motion of the bridge model subjected to 
the bi-directional ground acceleration is as follows: 
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Where [M], [C] and [K] are mass, damping and stiffness matrices of the model, respectively; {FP(t)} is 
the resultant vector of impact forces acting on the mass centre of the deck. The mass and stiffness 
matrices are defined as follows:  
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With regard to Rayleigh method, the damping matrix is also defined as [C]=a[M]+b[K] (ξ =5%.). The 
resultant vector of impact forces denoted as {FP(t)} can be calculated by this formula: 
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In which np is the number of contact points between the deck and the rigid abutments, vectors {1 xrj 
yrj}

T and {1 xlj ylj}
T are the locations of contact points with respect to the mass centre at the left and 

right abutments, respectively. FPRj(t) and FPLj(t) are the impact forces at contact points between the 
deck and the right and left abutments, respectively. These forces are calculated based on the contact 
element model employed to simulate the seismic pounding (Kalantari and Amjadian, 2011).  
 
 
3. SEISMIC POUNDING SIMULATION 
 
The nonlinear viscoelastic model is used to simulate the impact forces at the contact points (Jankowski 
2004 and 2006). This model includes a nonlinear spring (kp) in parallel with a nonlinear damper (cp) 
which the spring acts based on the Hertz law of contact and the damper is applied to simulate the 
process of energy dissipation during contact. With regard to this model, FPRj(t) and FPLj(t) are 
calculated as follows (i=R → α = +1, i=L → α = -1): 
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In which Mej is the effective mass of the deck at each contact point and is defined as a proportion of 
the deck mass (Mej=λjM). 
 
 
4. NUMERICAL EXAMPLE 
 
As a numerical example, the south eastern bridge of Foothill Boulevard Undercrossing (Jennings et al, 
1971) is modeled with regard to the presented formulas. This skewed highway bridge is a four-span 
continuous reinforced concrete box girder bridge with a skewness angle of about 60˚ and ex/r≠0, 
ey/r=0. The plan-view of this bridge is shown in Fig. 4.1. In order to analyze the dynamic model, seven 
pairs of accelerograms as the input accelerations are selected from PEER strong ground motion 
database (web address: http://peer.berkeley-.edu/smcat/) and applied to the sample bridge along the  



 
Figure 4.1. The plan-view of the south eastern bridge of Foothill Boulevard Undercrossing 
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Figure 4.2.  The absolute acceleration response spectrums of the seven pairs of accelerogram. 

 
two orthogonal axes. To satisfy the stiff soil assumption, these accelerograms are taken out among 
sites with the stiff soil conditions. The absolute acceleration response spectrums of these ground 
motions along X and Y directions are shown in Fig. 4.2. To analyze the model, all of accelerograms 
are scaled to the mean spectral accelerations at the predominant period of the sample bridge (Tn=0.520 
sec). The mean spectral accelerations along the X and Y directions at the predominant period are 
1.111g and 1.168g, respectively. The matrix equation of motion (Eqn. 2.1) is implemented in 
SIMULINK that is software for modeling, simulating, and analyzing of dynamic systems. The matrix 
equation of motion is numerically solved using the 4th-order Runge-Kutta method denoted by ode4 in 
SIMULINK. The time-step is selected equal to 10-3 sec to smooth sudden changes of the system state 
due to the instantaneous transmission of a large stiffness to system during the contact period. This 
time-step is satisfactory for numerical integration of the equation because it sufficiently prevents the 
numerical errors and instability. It is clear that to simulate the colliding of the deck with abutments a 
specified number is required for contact points. It is assumed that the number of contact points is equal 
to 21 sufficient to accurately estimate the impact forces transmitted to the deck. The main parameters 
of the nonlinear viscoelastic contact model are the stiffness (kp) and damping (ξp) parameters. The 
stiffness ratio (kp) depends on the material properties and geometry of the colliding members and the 
damping ratio (ξp), which is a criterion for the energy dissipation during impact, depends on the 
restitution coefficient (e). Based on the experimental verification performed by Jankowski (2004) for 
concrete-to-concrete impact, the value of restitution coefficient is approximately equal to 0.65 and the 
value of damping ratio is calculated equal to 0.35. Furthermore, based on the results of this 
experiment, it is assumed that kp is equal to 2.75×106 kN/m1.5 at each contact point.  
 
 
5. PARAMETRIC STUDY 
 
To investigate the influence of seismic pounding on the linear responses of the sample bridge’s deck, a 
parametric analysis is carried out under variations of different parameters. The parameters considered 
are: the width of expansion joints (gap), the skewness angle (β) and the normalized stiffness 
eccentricity along the X axis (ex/r). The response quantities of interest are: the maximum transverse 
displacement of the deck corners, (Ycpi)P/(Ycpi)N.P, (i=1,2,3, and 4), the maximum rotation of the deck,  



 
(a) (b) 

Figure 5.1.1. Variation of the displacement of the deck versus different values of the width of expansion joints 
(β=60°, ex/r=ey/r=0), (a) ratio of the transverse displacements of corners, and (b) rotation of the deck.

 

(a) (b) (c) 
Figure 5.1.2. Variation of the acceleration of the deck versus different values of the width of expansion joints 
(β=60°, ex/r=ey/r=0), (a) longitudinal acceleration, (b) transverse acceleration, and (c) rotational acceleration.

 
r×Ө, the maximum absolute longitudinal acceleration of the deck, (Ẍabs)P/(Ẍabs)N.P, the maximum 
absolute transverse acceleration of the deck, (Ϋabs)P/(Ϋabs)N.P, and the maximum rotational acceleration 
of the deck, r×Ӫ. To more clearly study the effect of seismic pounding, the translational responses of 
the deck are stated as ratios in the case of pounding to the case of no pounding. Firstly, all of the 
responses under variations of mentioned parameters are calculated for all of the seven pairs of 
accelerograms and then averaged. 
 
5.1. Influence of the width of expansion joints (gap). 
 
The size of gap is varied from 2.5cm up to 32.5cm and it is assumed that the skewed bridge is 
symmetric (ex/r=ey/r=0) with the skewness angle (β) equal to 60°. The result presented in Fig. 5.1.1.a 
is the ratio of (Ycp)P/(Ycp)N.P calculated for the corners of 1, 2, 3, and 4. This figure shows that the 
collision of the deck with abutments noticeably influences the transverse displacement of corners. As 
can be seen the seismic pounding increases the transverse displacements of the acute corners (i.e. 
corners of 2 and 4) and decreases the transverse displacements of the obtuse corners (i.e. corners of 1 
and 3). It is also observed that major variations occur in the small sizes of gap, whereas these 
variations are reduced by increasing the width of expansion joints. The variations of the deck rotation 
are also shown in Fig. 5.1.1.b. The results show that the seismic pounding amplifies the rotation of the 
deck in small values of the width of expansion joints; however, this response is reduced by increasing 
the size of gap. This point should be considered that the torsional moments of columns have a direct 
relationship with the rotation of the deck.  
 
Fig. 5.1.2.a and 5.1.2.b present the ratio of (Ẍabs.)P/(Ẍabs.)N.P and (Ϋabs.)P/(Ϋabs.)N.P, respectively. As can 
be observed the seismic pounding significantly increases the transverse acceleration of the deck by 
more than 25%, while its effect on the longitudinal acceleration of the deck is not so noticeable (the  



(a) (b) (c) (d) 
Figure 5.2.1. Variation of the transverse displacement of the deck corners versus different values of the 

skewness angle (ex/r=ey/r=0), (a) corner No.1, (b) corner No.2, (c) corner No.3 and (d) corner No.4. 
 

Figure 5.2.2. Variation of the rotation of the deck versus different values of the skewness angle (ex/r=ey/r=0). 
 

 
(a) (b) (c) 

Figure 5.2.3. Variation of the acceleration of the deck versus different values of the skewness angle 
(ex/r=ey/r=0), (a) longitudinal acceleration, (b) transverse acceleration, and (c) rotational acceleration. 

 
amplification is less than 25%). Presented in Fig. 5.1.2.c indicates that the seismic pounding has also 
significant effects on the rotational acceleration of the deck. In general, it can be concluded that by 
reduction of the width of expansion joints which raises the possibility of seismic pounding, the 
transmitted impact forces amplify the rotational acceleration of the deck.  
 
5.2. Influence of the skewness angle (β). 
 
The value of β is varied from 0° up to 60°. It is assumed that the skewed bridge is symmetric (ex/r= 
ey/r=0) and the width of expansion joints is equal to 2.5, 5.0, 7.5, 10.0, 12.5 and 17.5 cm. Presented in 
Fig. 5.2.1 is the ratio of (Ycp)P/(Ycp)N.P calculated for the corners of 1, 2, 3, and 4. As may be seen in 
this figure, the collision of the deck with abutments increases the transverse displacements of the acute 
corners (i.e. corners 2 and 4) in all of skewness angles. The considerable increase in this response is 
observed in the moderate skewness angle (15° up to 35°) and the small sizes of gap (2.5 and 5.0 cm). 
Similarly, the significant increase in the transverse displacements of obtuse corners (i.e. corners 1 and 
3) is observed in the moderate skewness angle and the small sizes of gap. However, the collision 
decreases this response in the large skewness angles (more than 50°) and the small sizes of gap. The 
curves presented in Fig. 5.2.2 show the variations of rotation of the deck. It is observed that the 
rotation of the deck is considerably amplified by increasing the skewness angle and decreasing of the 
width of expansion joints. Hence, in the symmetric skewed highway bridges with large skewness 
angles and the small sizes of gap, it can be expected that the seismic pounding amplifies the seismic  



(a) (b) (c) (d) 
Figure 5.3.1. Variation of the transverse displacement of the deck corners versus different values of the 

normalized stiffness eccentricity (β=0°), (a) corner No.1, (b) corner No.2, (c) corner No.3 and (d) corner No.4. 
 

Figure 5.3.2. Variation of the rotation of the deck versus different values of the normalized stiffness eccentricity 
(β=0°). 

 

 
(a) (b) (c) 

Figure 5.3.3. Variation of the acceleration of the deck versus different values of the normalized stiffness 
eccentricity (β=0°), (a) longitudinal acceleration, (b) transverse acceleration, and (c) rotational acceleration. 

 
demand of torsional moments of columns (Tθ=kθӨ) from zero to a significant value.  
 
Fig. 5.2.3.a and 5.2.3.b show the ratio of (Ẍabs)P/(Ẍabs)N.P and (Ϋabs)P/(Ϋabs)N.P for different skewness 
angles, respectively. As may be seen increasing β decreases the longitudinal acceleration of the deck 
and increases the transverse acceleration of the deck. However, both of two ratios are increased over 
the range of β by decreasing of the gap size considered. Fig. 5.2.3.c indicates the effects of variations 
of skewness angle on increasing rotational acceleration of the deck. As can be seen in this figure, the 
rotational acceleration of the deck is significantly amplified by increasing the skewness angle and 
reduction of the width of expansion joints. 
 
5.3. Influence of the normalized stiffness eccentricity along the X axis (ex/r). 
 
The normalized stiffness eccentricity of the sample bridge is varied along the X axis. For this purpose, 
the lengths of the second and third spans of the sample bridge are varied, but the lengths of the first 
and fourth spans remain equal to 11.278 m. Therefore, ex/r becomes equal to 0.00, ±0.104, ±0.207, 
±0.309, and ±0.407. In this part of study, two skewness angles of β=0° (straight) and β=60° (skewed) 
are considered, and it is also assumed that the width of expansion joints is varied as 2.5, 5.0, 7.5, 10.0, 
12.5 and 17.5 cm. Fig. 5.3.1 to 5.3.3 and Fig. 5.3.4 to 5.3.6 present the seismic responses of the 
straight and skewed bridges, respectively.  
 



(a) (b) (c) (d) 
Figure 5.3.4. Variation of the transverse displacement of the deck corners versus different values of the 

normalized stiffness eccentricity (β=60°), (a) corner No.1, (b) corner No.2, (c) corner No.3 and (d) corner No.4. 
 

Figure 5.3.5. Variation of the rotation of the deck versus different values of the normalized stiffness eccentricity 
(β=60°).

 

 
(a) (b) (c) 

Figure 5.3.6. Variation of the acceleration of the deck versus different values of the normalized stiffness 
eccentricity (β=60°), (a) longitudinal acceleration, (b) transverse acceleration, and (c) rotational acceleration. 

 
The result presented in Fig. 5.3.1 is the ratio of (Ycp)P/(Ycp)N.P calculated for the corners of 1, 2, 3, and 
4 in the straight bridge. This figure shows that the variations of ex/r, in contrast to what is expected, 
have no noticeable effects on the transverse displacements of corners. Nevertheless, for ex/r=-0.4 
representing the farthest distance of corners of 2 and 3 from the stiffness centre, the ratios of 
(Ycp1)P/(Ycp1)N.P and (Ycp4)P/(Ycp4)N.P are reduced, while the ratios of (Ycp2)P/(Ycp2)N.P and 
(Ycp3)P/(Ycp3)N.P for all sizes of the gap remain at a constant value which is equal to one. After 
transmission of the stiffness centre toward the right side, the transverse displacements of all four 
corners are increased. When ex/r becomes equal to -0.1, (Ycp2)P/(Ycp2)N.P and (Ycp3)P/(Ycp3)N.P reach 
their maximum value equal to 1.13 which emerge in the small sizes of gap. On the other hand, 
(Ycp1)P/(Ycp1)N.P and (Ycp4)P/(Ycp4)N.P approximately become equal to one. After passing the stiffness 
centre through the mass centre, the corners inversely and approximately follow the trend mentioned 
above. Fig. 5.3.2 indicates the rotation of the deck. The figure indicates that the rotation of the deck is 
symmetrically amplified by increasing the absolute value of ex/r. Moreover, it is seen that variations of 
the gap size has no evident effects on the rotation of the deck, while the eccentricity of the stiffness 
centre is more effective on this response. The variations of the ratios of (Ẍabs)P/(Ẍabs)N.P and 
(Ϋabs)P/(Ϋabs)N.P in the straight bridge versus the variations of ex/r are shown in Fig. 5.3.3.a and 5.3.3.b. 
Based on the fact that impact forces act along the longitudinal axis of the deck in straight bridges, so it 
is seen that the ratio of (Ẍabs)P/(Ẍabs)N.P for different values of ex/r is increased by the seismic pounding. 
However, this increasing is somewhat different for different values of the gap size. As this figure 
indicates the ratio of (Ẍabs)P/(Ẍabs)N.P is reduced by increasing the value of the gap size, while the effect 



of variations of ex/r on this response for a specified value of the gap size is almost constant. It is also 
observed that the variations of ex/r have no noticeable effects on the transverse acceleration of the 
deck, and so this response for different values of ex/r and the gap size almost remains constant. The 
rotational acceleration of the straight bridge versus variations of ex/r is presented in Fig. 5.3.3.c. It is 
seen that increasing the absolute value of ex/r amplifies the response. Moreover, it is evident that the 
variations of the gap size do not affect this response. 
 
The seismic response of the skewed bridge (β=60) is evaluated here. Presented in Fig. 5.3.4 is the ratio 
of (Ycp)P/(Ycp)N.P calculated for the corners of 1, 2, 3, and 4 in the skewed bridge. This figure implies 
that the variations of ex/r have noticeable effects on the transverse displacements of corners. As it is 
expected, this influence is more observable in the acute corners of the skewed bridge’s deck (i.e. 
corners 2 and 4). Fig. 5.3.5 shows the rotation of the deck. As may be seen in this figure, the variations 
of ex/r cause a noticeable amplification in the rotation of the deck of the skewed bridge. This response 
is varied for different values of the gap size. It is observed that the rotation of the deck is increased by 
increasing the absolute value of ex/r and enlarging of the gap size. In the case of the symmetric skewed 
bridge, the rotation of the deck is amplified by decreasing the sizes of gap; however, for the high 
asymmetric skewed bridges (i.e. |ex/r|>0.2), the rotation of the deck is reduced by decreasing the sizes 
of gap. The variations of the ratios of (Ẍabs)P/(Ẍabs)N.P and (Ϋabs)P/(Ϋabs)N.P in the skewed bridge versus 
the variations of ex/r are shown in Fig. 5.3.6.a and 5.3.6.b. It can be seen that, although collision of the 
deck with abutments increases both longitudinal and transverse acceleration, the effects of variations 
of ex/r on the ratio of (Ϋabs)P/(Ϋabs)N.P are more tangible than the ratio of (Ẍabs)P/(Ẍabs)N.P. For different 
values of the gap size, the transverse acceleration of the skewed bridge is amplified by increasing the 
absolute value of ex/r; however, this amplification is more obvious in small sizes of gap. Fig. 5.3.6.c 
shows variations of the rotational acceleration of the skewed bridge’s deck versus variations of ex/r. 
This figure indicates that increasing the absolute value of ex/r amplifies the rotational acceleration, and 
moreover, it shows that this response has much larger values in the small sizes of gap. 
 
 
6. CONCLUSION 
 
This paper presents a 3DOF dynamic model to analyze the unique seismic response of skewed 
highway bridges during the ground excitation. The collision of the deck with abutments is modeled by 
putting some contact points between the deck and abutments. The nonlinear viscoelastic contact model 
is employed to simulate the impact forces generated at contact points. Then, a parametric study is 
carried out on the numerical example to investigate the influence of seismic pounding on the linear 
responses of the deck. The applicable results obtained from the parametric study can be briefly stated 
as follows: 
 

1- Unseating of the deck in abutments due to failure of side walls is very probable during a 
strong earthquake. Hence, investigation of the transverse displacements of corners of the deck 
amplified by the seismic pounding is essential in highway bridges. In general, seismic 
pounding has no noticeable effects on the transverse displacements of corners of the deck in 
the symmetric straight highway bridges. In the asymmetric straight highway bridges; however, 
this response depending on the distance of corners from the stiffness centre may be increased 
or decreased. On the other hand, in the symmetric skewed highway bridges with moderate 
skewness angles (β=15°~35°) and the small sizes of gap (gap=2.5~5.0cm), the seismic 
pounding leads to a considerable increase in the transverse displacements of all of the four 
corners. For large values of the skewness angle (β≥50°), the transverse displacements of the 
acute corners is larger than those in the obtuse corners. This trend is also more obvious for the 
small sizes of gap (gap=2.5~5.0cm).  
 

2- The seismic demand of torsional moments of columns has a direct relationship with the 
rotation of the deck. Therefore, investigation of the rotation of the deck amplified by the 
seismic pounding is important in seismic analysis of highway bridges. Although, asymmetry 
of the substructure considerably increases the rotation of deck in the straight highway bridges, 



the seismic pounding has no evident effects on the rotation of the deck of this type of bridges 
for both of the symmetric and asymmetric cases. The rotation of the deck induced by seismic 
pounding is significantly increased by increasing the skewness angle and reduction of the gap 
size in the symmetric skewed highway bridges. In the skewed highway bridges with much 
larger skewness angles, the rotation of the deck is increased by increasing the asymmetry of 
the substructure. The effect of asymmetry on this response is more than the effect of seismic 
pounding in large sizes of gap.  

 
3- The seismic pounding has no evident effects on the transverse and rotational acceleration of 

the deck in the symmetric and asymmetric straight highway bridges; however, it increases the 
longitudinal acceleration. The transverse and rotational accelerations are increased by 
increasing the skewness angle and reduction of the gap size, whereas this reduction is much 
less in the small sizes of gap. The asymmetry of the substructure has no noticeable influences 
on the longitudinal acceleration of the skewed highway bridges with large skewness angle. On 
the other hand, its effect on increasing the transverse and rotational accelerations is 
considerable and the maximum amplification is observed in small sizes of gap. 
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