
 
 

Development of 3D Staggered Grid  
Fourth Order Finite Difference  
Algorithm for Strong Ground Motion 
 
 
J.P. Narayan and D.  Sahar 
Department of Earthquake Engineering,  
Indian Institute of Technology Roorkee, Roorkee -247 667, INDIA  
 
 
 
 
 
 
 
 
SUMMARY: 
Development of a 3D fourth order spatial accurate finite-difference algorithm for the simulation of strong ground 
motion in time domain is documented in this paper. The algorithm is based on staggered grid finite-difference 
approximation of 3D velocity-stress viscoelastodynamic wave equations with a continuous variable grid size. 
VGR-stress imaging technique (VGR is acronym for ‘vertical grid-size reduction’) is used for implementation of 
free surface boundary condition. The implementation of viscoelastic damping in the time domain finite-
difference simulations is validated by comparing the numerically computed phase velocity and quality factor of a 
viscoelastic homogeneous medium with the phase velocity and quality factor obtained using Futterman’s 
relationship and GMB-EK rheological model. The implementation of viscoelastic damping is also validated by 
comparing the numerically computed spatial spectral damping with the analytical one. Grid dispersion and 
numerical stability is studied in details. Continuous variable grid size is used in order to reduce the requirement 
of computational memory and time. An earthquake source is implemented into the numerical grid based on the 
moment tensor source formulation.  
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1. INTRODUCTION 
 
In the recent past, the simulation of seismic wave field in realistic 3D earth model has been performed 
by using various numerical methods with the advent of recent advancement in computational facilities. 
The staggered grid finite-different (FD) scheme was first proposed by Madariaga (1976), which was 
used subsequently for the simulation of 3D seismic waves by other scientists (Graves, 1996; Pitarka, 
1999). The continuous-variable grid size was used by Pitarka (1999) and Oprsal and Zahradnik (2002) 
for 3D simulation. The incorporation of realistic damping into time-domain simulation was first 
introduced by Day and Minster (1984) using Pade – approximation. Emmerich and Korn (1987) 
improved the accuracy and efficiency of this method by considering the rheology of the generalized 
Maxwell body (GMB), which was later known as GMB-EK rheological model. Carcione et al. (1988) 
have considered the rheology of generalized Zener body (GZB) and developed an approach in terms of 
memory variables. Kristek and Moczo (2003) have documented the basic theoretical and algorithmic 
aspects of memory efficient implementation of realistic damping in time-domain FD simulation with 
material discontinuities. Kristek et al. (2010) have developed a 3D- fourth order velocity-stress 
staggered-grid FD algorithm with a spatial discontinuous grid.  
 
In this paper, development of (2, 4) staggered-grid finite-difference algorithm based on velocity-stress 
viscoelastodynamic 3D-wave equations for a heterogeneous media is documented. The 
implementation of viscoelastic damping in the time domain finite-difference simulations is validated 
by comparing the numerically computed phase velocity and quality factor of a viscoelastic 
homogeneous medium with the phase velocity and quality factor obtained using GMB-EK rheological 



 
 

model (Emmerich and Korn, 1987; Kristek and Moczo, 2003) and Futterman’s relationship (1962). 
The implementation of viscoelastic damping is also validated by comparing the numerically computed 
spatial spectral damping with the analytical one. The numerical grid dispersion and stability is studied 
in details. The accuracy of continuous variable grid size is tested for different grid spacing ratios. 
Earthquake source is implemented in to numerical grid based on moment tensor source formulation. 
The snapshots of particle velocity at different times were taken for analysis and verification of 
implementation of earthquake source in numerical grid.  
 
 
2.  FD APPROXIMATION OF VISCOELASTODYNAMIC 3D WAVE EQUATIONS 
 
In this section, development of a 3D staggered-grid time-domain finite-difference algorithm along with 
the incorporation of realistic damping is described in brief. The 3D viscoelastic wave equations for 
heterogeneous medium are given by  
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where U, V and W are the particle velocity components along the x, y and z-axes, respectively. σxx, σyy 
and σzz are normal stress components and σxy, σxz , and σyz are shear stress components.  Kഥ୳, λത୳   and 
µത୳   are modified elastic parameters and Yഥ୪

α,  Yഥ୪
λ and Yഥ୪

β  are the modified anelastic coefficients. 
 χ୪

୶୶,  χ୪
୷୷ , χ୪

୸୸ and  χ୪
୶୷, χ୪

୶୸,  χ୪
୷୸  are the anelastic functions for normal and shear stress components, 

respectively. λ୳  is the unrelaxed Lame’s parameter and K୳  is equal to sum of λ୳  and twice of µ୳ .  
ப

ப୶
, ப

ப୷
, ப

ப୸
 , and  ப

ப୲
 are the differential operators and ‘m’ is the number of relaxation frequency. Four 

relaxation frequencies are used for the present study. Figure 1 show the staggering technique, where 
normal stress components σxx, σyy and σzz, unrelaxed elastic parameters K୳  and  λ୳ , anelastic 
coefficients Yα and Yλ and anelastic functions χ୶୶ , χ୷୷and χ୸୸ are defined at the center of the grid. The 
particle velocity components U, V and W, and density ρ are defined at the center of the faces. Shear 
stresses σxy, σxz , σyz, unrelaxed modulus of rigidity µ୳ , anelastic coefficient Yβ , and anelastic 
functions χ୶୷, χ୶୸, χ୷୸  are defined at the mid of the edges as shown in figure 1. 
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Figure 1. Staggering technique for 3D-wave modeling with fourth order spatial accuracy 

 
The material independent anelastic functions has been computed at four relaxation frequencies using 
the following equations (Kristek and Moczo, 2003; Moczo et al., 2005). 
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Similarly, the anelastic functions  χ୪

୷୷ , χ୪
୸୸ and χ୪

୶୸,  χ୪
୷୸ can be computed.  In order to compute the 

input parameters namely unrelaxed modulus and anelastic coefficients to the FD numerical grid, phase 
velocity and quality factor at reference frequency (ω୰) is used. The P-wave anelastic coefficients 
Y୪
α, l ൌ 1, 2, … , m and S-wave anelastic coefficientsY୪

β , l ൌ 1, 2, … , m have been computed with the 
help of following equations using Futterman’s equation (Futterman, 1962) and least square technique 
for optimization. 
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The logarithmically distributed considered values of relaxation frequencies ω1, ω2,  ω3  and ω4  are 
0.1257, 1.257, 12.57 and 125.7, respectively. The Qሺωkሻ values obtained using the Q at reference 
frequency and Futterman’s equation has been used for optimization. The ωk  values are also 
logarithmically distributed. ωk  is defined at ωl as well as at the mid of two consecutive  ωl values. 
Further, ωkୀ1 ൌ ωlୀ1  and ωkୀ2mି1 ൌ ωlୀm.  
 
The anelastic coefficientsYl

λ, l ൌ 1, 2, … , m were obtained using the following relationship 
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Further, the unrelaxed elastic parameters Ku and µu for P-wave and S-wave have been obtained using 
phase velocity of P-wave (VP,ωr ) and S-wave (VS,ωr ) at reference frequency ሺfr ൌ 1Hzሻ  and the 
following equations (Moczo et al., 1997). 
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In case of P-wave Yl will be replaced by Yl

α and that in case of S-wave will be replaced by Yl
β  in 

equation (16). The unrelaxed Lame’s parameter λu is obtained using the following relationship 
 
λu ൌ Ku െ 2µu (17) 
 
The modified elastic parameters  Kഥ u, µതu and λതu are computed using the following relationships. 
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Similarly, the modified anelastic parameters  Yഥ l

α , Yഥ l
β  and Yഥ l

λ   are computed using the following 
relationships. 
 
Yഥ l
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α, Yഥ l
β ൌ 2G2lµuYl

β, Yഥ l
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The constants  G1l and  G2l are given by. 
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The effective value of the unrelaxed modulus of rigidity µu at the center of the side is obtained using 
harmonic mean of µu at the node points in order to incorporate the material discontinuity. The λu, and 
Ku  at the centre of grid cell are obtained using harmonic mean and effective values of the density ρ at 
the center of the face are obtained using arithmetic mean of ρ at the node points (Moczo et al., 2000). 
The 3D-viscoelastodynamic wave eqns. (1-9) are discretized using an explicit 4th- order in space, 2nd- 
order in time finite difference scheme (Graves, 1996; Pitarka, 1999 and Moczo et al., 2000, Narayan 
and Kumar, 2008). In order to avoid the soil thickness discrepancy arising due to the use of images of 
stress components across the free surface (Levander 1988, Graves 1996), VGR-stress imaging 
technique proposed by Narayan and Kumar (2008) was implemented at the free surface. Both the 
sponge boundary (Israeli and Orszag 1981) and absorbing boundary condition of Clayton and Engquist 
(1977) were implemented on the model edges to avoid the edge reflections. 
 
 
3. VALIDATION OF DEVELOPED ALGORITHM 
 
3.1 Numerical grid dispersion 
  
The accuracy of developed algorithm is verified by comparing the numerical and analytical dispersion 
curves for P-wave for a homogeneous unbounded elastic model. The P-wave velocity, S-wave velocity 
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and density for the homogeneous model were taken as 5150 ms-1, 3090 ms-1 and 2.8 gcm-3, 
respectively. Ricker wavelet with 4.0 Hz dominant frequency was used as an excitation function. The 
seismic responses computed at distances of 500 m and 580 m, were used for the computation of phase 
velocity. Figure (2) shows the comparison of normalized phase velocity αgrid/α for P wave versus 
sampling ratio s (= h/λ) with the same obtained by analytical relation given by Moczo et al. (2000). 
Analysis of figure (2) reveals that the error in the numerically computed dispersion curve is within the 
permissible limit when the number of grids per shortest wavelength is more than 6. 
 
 
 
 
 
 
 
 
 

 

Figure 2. A comparison of numerical and analytical grid dispersion curves for the P-wave 

 
3.2 Anelastic damping 
 
In order to verify the accuracy of implementation of anelastic damping in time domain FD simulation, 
seismic responses of a homogeneous viscoelastic unbounded model were computed for different 
values of quality factor at reference frequency. The velocities and quality factors for P- and S-waves at 
reference frequency (1.0 Hz) and computed unrelaxed moduli are given in table 1. A horizontal line 
source was inserted into numerical grid using a number of point sources at the same depth, and the 
responses were computed on a vertical array. 

 
 
Figure  3. Comparison of phase velocity and quality factor of  P-wave computed numerically with the same 
computed by the GMB-EK model and theoretical Futterman relation   



 
 

First, FFT of two traces at an offset of ∆x were used to find out the phase difference (∆φ) and spectral 
amplitude (ν) and then were used to compute the phase velocity and spectral quality factors using the 
following relations. 
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Figure (3) shows the comparison of numerically obtained phase velocity and quality factor for P-wave 
with the same obtained using GMB-EK model and Futterman’s relation. The good agreement between 
numerical and analytical results proves the authenticity of the present algorithm. 
 
Table 1: The velocities and quality factors for P- and S-waves and unrelaxed moduli. 
 

    
Model 

Velocity at reference 
 frequency 

Quality factor at 
reference frequency 

ρ 
(g/cc) 

Unrelaxed moduli 

Vp (ms-1) Vs (ms-1) Qp Qs µu(GPa) λu(GPa) Ku(GPa) 
MVQ1 5000 3000 50 50 2.8 26.73 20.79 74.25 
MVQ2 5000 3000 100 100 2.8 25.95 20.18 72.08 

 
 
3.3 Spatial spectral damping 
 
In order to further confirm the accuracy of implementation of viscoelastic damping in time domain FD 
simulation the spatial spectral damping in the form of spectral amplitude ratio (A/A0) was computed 
for different distance travelled. Seismic responses were computed at difference locations using the 
same source and receiver configuration and model parameters as in previous the case.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  (a) Time response at reference receiver (continuous line) and responses at distance of 450 m (dash 
line) and 3000 m (dash-dot line) and their respective spectral amplitudes, (b) Comparison of numerically 
computed spectral amplitude ratios with the same computed by analytical relation for S-wave 

 
Figure 4(a) shows the response at reference receiver point (continuous line) and responses at distance 
of 450 m (dash line) and 3000 m (dash-dot line). It also shows the respective spectral amplitudes. The 



 
 

spectral amplitude ratios were computed for 450 m and 3000 m distance travelled. The analytical 
spectral amplitude ratio was computed with the help of well known equation A

  Ao
ൌ eିαx, using phase 

velocity and quality factor obtained from GMB-EK rheological model. Figure 4(b) shows the 
comparison of numerically and analytically computed spectral amplitude ratios for S-wave. The 
excellent matching betweem analytical and numerical spectral amplitude ratios also confirm the 
accuracy of procedure of implementation of viscoelastic damping. 
 
 
3.  PERFORMANCE OF NON-UNIFORM GRID MODELS 
 
The computation of seismic response of a model containing a lateral geometrical variations or a very 
soft soil layer with uniform grid, requires very large computational memory and time. This can be 
reduced by using a continuous grid mesh with a variable grid size. The performance of grid spacing 
ratios as 1:2, 1:2.67, 1:4 and 1:5 in one direction only is analyzed. The responses of homogeneous 
elastic model (11 km × 8 km × 8 km) with VP=5000 m/s, VS=3000 m/s and ρ =2.8 g/cc was computed 
with larger size of a grid cell as 40 m and different smaller size of a grid cell as 20 m, 15 m, 10 m, and 
8 m along x-direction. In the x-direction, the size of the grid cell was 40 m up to a distance of 7 km 
and after that variable (20 m, 15 m, 10 m and 8 m). The number of grids in small grid zone were 
increased accordingly to keep the model size same. A fixed grid size as 40 m was used along y and z-
directions. Seismic responses on a vertical array at a distance of 200 m from source were computed 
using plane wave front normal to x-axis. The distance of grid discontinuity zone from the source is 6.0 
km. The seismic response using uniform grid size of 40 m was also computed for the comparison. 
Figure 5(a) shows the comparison of responses computed using homogeneous grid size and various 
variable grid size for P-wave (upper) and S-wave (lower) at receiver point in the centre of vertical 
array. In figure 5(a), the signals reflected from the grid discontinuity zone are shown inside circle, 
which are negligible for P-wave and very minutely visible for S-wave. The reflected signals (inside 
circle in figure 5a) from grid discontinuity zone corresponding to grid spacing ratios as 1:2, 1:2.67, 1:4 
and 1:5 are shown in figure 5(b) with a 100 times larger amplitude scale. The computed average 
spectral reflectance is 0.64, 0.69, 0.7, and 0.72 percent for P-wave and 0.82, 0.84, 0.92, and 0.94 
percent for S-wave for grid spacing ratios 1:2, 1:2.67, 1:4 and 1:5, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 a & b. Computed responses of a homogeneous half space model for P and S-waves and only reflected 
signals from the grid discontinuity zone on scale 100 times larger scale, respectively 

P-wave responses were also computed for difference grid spacing ratios but keeping the discontinuous 
grid zone between the source and receiver array. The distance of discontinuous grid zone and receiver 



 
 

array was 600 km and 1.8 km from the source. Figure 6 shows the comparison of the computed 
responses using grid spacing ratios as 1:2, 1:2.67, 1:4 and 1:5 with the response computed using 
uniform grid at receiver point in the center of the vertical array. Analysis of figure 6 reveals that 
amplitude discrepancy arising due to the presence of discontinuous zone between the source and 
receiver is almost insignificant in all the cases. The percentage root mean square error with respect to 
the homogeneous grid size is 0.75, 0.79, 0.91 and 0.96 for grid spacing ratios 1:2, 1:2.67, 1:4 and 1:5, 
respectively. A good resemblance of responses for grid spacing ratios up to 5 with the response 
computed using uniform grid reveals that the maximum grid spacing ratio up to of the order of 5 can 
be used.  

 

  

 
 
 
 
 
 
 
 
 
 
Figure 6. Comparison of computed responses of a homogeneous half-space model using different grid spacing 
ratio with response computed using uniform grid 

 
4. POINT SOURCE IMPLEMENTATION 
 
A point source was implemented into the numerical grid based on moment tensor formulation (Coutant 
et. al., 1995; Pitarka, 1999; Narayan, 2001). In moment tensor source formulation, the ratio of moment 
tensor component to volume of grid was used as a stress tensor component (Aki and Richard, 1980).  
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where Mሶ xxሺtሻ, Mሶ yyሺtሻ, Mሶ zzሺtሻ, Mሶ xyሺtሻ, Mሶ xzሺtሻ, and  Mሶ yzሺtሻ are the time derivatives of moment tensor 
components and V is the volume of a finite difference cell. The radiation patterns were computed for 
double couple point shear dislocation source with focal mechanism as dip 90o, rake 0o and strike 0o in 
a homogeneous model of size 500 × 500 × 500 grids. The source was kept at the center of considered 
model. The snapshots were computed after 2.4 s. The grid size, time step and dominant frequency 
were taken as 60 m, 0.0055 s, and 4.0 Hz, respectively. Figures 7(a), 7(b) and, 7(c) shows the U, V, 
and W components of radiation patterns, in XY, XZ and YZ planes, respectively. In figure (7) 
different lobes of P-wave, SV-wave and SH-wave are visible in different components of radiation 
patterns, which are found to be in agreement with the used focal mechanism. According to the used 
focal parameters only σxy component of stress will be effective. Hence, from the wave equations, the 
amplitude of SH-wave should be more dominating than P-wave and SV-wave, which is visible in the 
radiation patterns. Maximum positive amplitude in the snapshots is shown in orange and yellow and 
negative amplitude is shown in blue color.  
  



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 a, b &c. Snapshots for U, V and W components in XY, XZ and YZ- planes, respectively 

 
 
5. DISCUSSION AND CONCLUSIONS 
 
A new (2, 4) staggered-grid finite-difference algorithm has been developed using 3D 
viscoelastodynamic wave equations based on GMB-EK rheological model in order to incorporate the 
realistic damping in time domain simulation in a heterogeneous medium. The excellent matching of 
numerically computed phase velocity and quality factor of a viscoelastic medium with the same 
computed analytically based on GMB-EK rheological model (Emmerich and Korn, 1987; Kristek and 
Moczo, 2003) and Futterman’s relationship (1962) confirmed the accuracy of procedure of 
implementation of viscoelastic damping in the time domain finite-difference simulations. The spectral 
amplitude ratios were computed for different distances and compared with the analytically computed 
spectral amplitude ratios using GMB-EK rheological model. A good matching of numerical and 
analytical spectral amplitude ratios for different distances further confirms the accuracy of procedure. 
To study grid dispersion, the grid dispersion curve for P-wave was computed numerically and 
compared with the grid dispersion curve obtained by using analytical solution given by Moczo et al. 
(2000). The good agreement between numerically and analytically computed dispersion curves 
revealed the requirement of 5-6 grid points per wavelength, which is in agreement with Moczo et al. 
(2000). Based on iterative numerical experiments, it was inferred that the required stability condition is 
the same as reported by Moczo et al. (2000).  In order to reduce the computational time and memory in 
case of a model containing very soft soil layer or geometry of local site, continuous variable grid size 
is used. The responses were computed with grid spacing ratios 1:2, 1:2.67, 1:4 and 1:5. The computed 
average spectral reflectance is 0.64, 0.69, 0.7, and 0.72 percent for P-wave and 0.82, 0.84, 0.92, and 
0.94 for S-wave for grid spacing ratios 1:2, 1:2.67, 1:4 and 1:5, respectively. The percentage root mean 
square error with respect to the homogeneous grid size is 0.75, 0.79, 0.91 and 0.96 for grid spacing 

(c)(b)(a) 

 



 
 

ratios 1:2, 1:2.67, 1:4 and 1:5, respectively, for P-wave. These results reveal that the error from the 
grid discontinuity zone less than 1% even in case of grid spacing ratio 5. Hence, the maximum grid 
spacing ratio of the order of 5 can be used ( Pitarka, 1999 and Oprsal and Zahradnik, 2002). A double 
couple point source was implemented in to computational grid using moment tensor source 
formulation (Pitarka, 1999; Narayan, 2001). The radiation patterns of P and S-waves are in agreement 
with the basic theory of source mechanism, which proves the accuracy of procedure for source 
implementation. 
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