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SUMMARY: 
This paper presents the effects of impedance contrast at basin-edge and basin-width on the spectral amplification 

and complex mode transformation of basin transduced Rayleigh (BTR) waves. BTR-wave, the acronym for basin 

transduced Rayleigh wave is used in the manuscript. 3D seismic responses of a 2D basin with varying width 

were computed using a developed 3D fourth-order spatial accurate time-domain finite-difference (FD) algorithm 

based on parsimonious staggered-grid approximation of 3D viscoelastodynamic wave equations. Analysis of 

computed seismic responses on the horizontal array across the basin revealed that a complex mode 

transformation of Rayleigh wave at the basin-edge has caused diffracted body waves, reflected Rayleigh wave 

and different modes of BTR-waves. Very large amplification of BTR-wave as compared to body waves is 

obtained for a certain frequency depending on the width of basin. It is concluded that spatial spectral 

amplification of BTR-wave in basin very much depends on position as well as width of basin. Currently, only 

body wave amplification in basin is being considered in earthquake resistant designs and seismic microzonation, 

although surface waves are more damaging as compared to the body waves. Further, the study on amplification 

of basin-transduced surface waves is very limited. The findings of this paper reveal that basin-edge effects on 

basin-transduced surface waves deserve a particular attention for the purpose of earthquake resistant designs and 

seismic microzonation. 
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1. INTRODUCTION 
 

The seismic motion that takes place at a certain site depends on three factors namely the rupture 

characteristics of the fault, the travelled path and the local geology. Under favorable circumstances 

local site effects may largely affect the ground motion characteristics. Significant differences in 

structural damage in basin as compared with the surrounding exposed rocks or even in the basin itself 

from place to place have been observed during the earthquakes. A lot of studies have been carried out 

in the past to quantify the effects of basin resonance and impedance contrast (IC) across the basement 

on the spectral amplification of body waves in the basins. But, very limited study has been done to 

quantify the effects of IC across the basin-edge on the spectral amplification and complex mode 

transformation of basin-transduced surface waves. Although, surface waves are more damaging as 

compared to the body waves. Rayleigh waves with high frequency content are generated during an 

earthquake when focal depth is shallow (Narayan and Kumar, 2010). If, these Rayleigh waves enter 

into a basin, a part of their energy is reflected back and rest is transmitted into the basin. Kawase 

(1993, 2002) called these types of surface waves inside the basin as ‘basin-transduced surface wave’. 

In basin, near the edge, complex transformation from one mode of surface wave from the surrounding 

rock to different modes in the basin sediments i.e., mode conversion between two different media, 

takes place. The existence of basin-transduced surface wave was reported by Hanks (1975), who 

showed a series of wavelets recorded during San Fernando, California earthquake (1971). The duration 

of displacement records were short in rocky region and it was quite long and dispersed in the Los 

Angeles basin. Vidale and Helmberger (1988) simulated low frequency basin-transduced surface 



waves in the San Fernando and Los Angeles basin successfully. Sato et al. (1999) reproduced results 

of the displacement records observed at Tokyo during the Kanto earthquake of 1923 and confirmed the 

recording of basin-transduced surface wave based on 3D finite difference simulations.  

 

Narayan (2010, 2012) simulated the response of  a 2D open basin towards the other basin-edge using 

P-SV FD algorithmand studied the spectral amplification of BTR-waves at a particular distance from 

the first basin-edge. He reported that frequency corresponding to the largest spectral amplification of 

BTR-waves very much depends on the fundamental frequency (F0) of soil in the basin. An increase of 

spectral amplification of BTR-waves with increase of IC at the basin edge was also inferred. One of 

the major draw backs of FD algorithm used by Narayan (2010, 2012) was that damping was not 

frequency dependent. In this paper, development of a (2, 4) 3D time-domain finite-difference 

algorithm based on parsimonious staggered grid approximation of viscoelastic wave equation is 

documented (Emmerich and Korn, 1987; Kristek and Moczo, 2003; Liu and Archuleta, 2006). The 

developed algorithm has been used to simulate the response of basin having different width on a 

horizontal array. Spectral amplification of BTR-wave in basin at different locations is analysed in 

details. VGR-stress imaging technique is implemented on the free surface (Narayan and Kumar, 2008). 

In order to avoid the edge reflections both the Clayton and Engquist (1977) and Israeli and Orszag 

(1981) absorbing boundary condition is implemented on the model edges. 

 

 

2. VISCOELASTIC 3D WAVE EQUATION 
 

Earth’s materials remember their past, that is, stress strain relation also depends on time. This is due to 

the fact that the behavior of the material is combined behavior of both, elastic solids and viscous 

fluids. Such behavior can be approximated using viscoelastic models of medium. Models witch quite 

well approximate rheological properties and behavior of the real earth’s material can be constructed by 

connecting the simplest rheological elements, Hooke and Stokes in parallel or series. To incorporate 

the realistic damping in time domain FD computation, Day and Minster (1984) used the Pade´ 

approximation to expand a frequency-dependent viscoelastic modulus into an n
th
-order rational 

function in order to replace the convolutory integral by n first-order differential equations. Emmerich 

and Korn (1987) improved the approach by considering the rheology of the generalized Maxwell body 

(GMB) whose viscoelastic modulus has the desired rational form. Kristek and Moczo (2003) 

addressed the basic theoretical and algorithmic aspects of memory efficient implementation of realistic 

attenuation in the staggered grid modeling in media with material discontinuities. Liu and Archuleta 

(2006) developed an approach to determine the relaxation time and weight coefficients of the 

relaxation functions based on arithmetic averaging of the viscoelastic moduli.  

 

The viscoelastic wave equation for 3D heterogeneous medium based on anelastic coefficients and 

anelastic functions can be written as given below (Kristek and Moczo, 2003; Moczo and Kristek, 

2005). 
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Where ���, ���   and /��  are modified elastic parameters and  ���� ,  ���" and ��3 are the modified anelatic 
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Figure 1. Shows the staggering technique for 3D viscoelastic wave modeling. 

  



Figure 1 shows the staggering technique, where normal stress components σxx, σyy and σzz, unrelaxed 

elastic parameters �� and ��, anelastic coefficients ��  678  �" and anelastic functions  ��  ,  ��678  

are defined at the center of the grid. The particle displacement components U, V and 

W in the x, y and z-direction and density ρ are defined at the centre of face as shown in figure 1. The 

shear stresses σxy, σxz, σyz, unrelaxed modulus of rigidity /�, anelastic coefficient �3and anelastic 

function  ��,  �
,  �
 are defined at the positions as shown in figure 1. ��is the unrelaxed Lame’s 

parameter and �� is equal to sum of �� and twice of /�. 

 

The material independent anelastic functions  ���, ���,  �

,  ���,  ��
  and  ��
  are given by the 

following equations. Superscript ‘n’ denote the time index.  
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In order to compute the input parameters namely unrelaxed modulus and anelastic coefficients to the 

FD numerical grid, phase velocity and quality factor at reference frequency (;<) is used. The P-wave 

anelastic coefficients ��� , ) � 1, 2, … ,. and S-wave anelastic coefficients ��3, ) � 1, 2,… ,. have 

been computed with the help of  Futterman’s equation (Futterman, 1962) and least square technique 

for optimization (Kristek and Moczo, 2003). 

 

The modified elastic parameters ��� , /��   and ���  are computed using the following relationships. 
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Similarly, the modified anelastic parameters ����, ���3 and ���"  are computed using the following 

relationships. ���� � >������� ) � 1,2,… ,.  
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The constants  >(�   and  >��  along with ω as the attenuating angular frequency are given by. 
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3.FD APPROXIMATION OF WAVE EQUATION 
 

In equations (1) - (9), the time derivatives were replaced by second order accurate central difference 

FD operator and space derivatives were replaced by a fourth order staggered grid FD operator 

(Levander, 1988; Moczo et al., 2000; Narayan and Kumar, 2008). FD approximation of only single 

component of particle displacement stress component is given in the following equations purposely. 
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4. SIMULATION OF BTR-WAVES: 

 

In order to study the effects of basin-width on the spectral amplification and complex mode 

transformation of basin transduced Rayleigh (BTR) waves, seismic responses of  basin having width 

as 100 m, 200 m, 400 m, 800 m and 1200 m were computed. X-axis and Y-axis are pointing towards 

north and east, respectively. The considered basin with edge slope 90° and soil thickness 120 m was 



infinitely extended in east-west direction, as shown in figure 2. The model parameters namely 

velocities and quality factors at reference frequency, density and unrelaxed moduli for both the 

sediment in basin and basement are given in Table 1. The centre points of all the basins and the array 

was 2.1 km north of the epicenter. Seismic responses were computed at 41 equidistant (40 m apart) 

receiver points extending from 1.3 to 2.9 km north of epicentre. A plane Rayleigh wave front oriented 

in east-west direction was implemented into numerical grid using a line source at a depth of 70 m 

using Ricker wavelet as source excitation function with 4.0 Hz dominant frequency. The time step was 

taken as 0.0008 s. The spectral bandwidth of recorded Rayleigh wave at a distance of 1.86 km north of 

epicenter are shown in figure 2b. In order to compute the spectral amplification of BTR-waves, 

seismic responses of model with and without the basins were computed. 

 

 

 
 

Figure 2a&b.3D closed basin model and spectral amplitude of Rayleigh wave computed at 1.9 km north of 

epicenter, respectively. 

 

 
Table 1. Soil and hard rock parameters considered 

Earth 

Rheology 

 

 Parameters at reference frequency (fr)  

Density 

(g/cc) 

  

Poisson 

ratio (ν) 

Unrelaxed moduli 

Vp(m/sec) Vs(m/sec) Qp=Qs 
µu 

(GPA) 

Ku= (λ+2µ) 

(GPA) 
λu 

(GPA) 

Soil 1870 1000 100 1.8 0.3 1.853 6.481 2.774 

Rock 5542 3200 320 2.8 0.25 28.935 86.788 28.918 

 

Figure 3 depicts the horizontal and vertical components of seismic response of model without 

considering the basin (means half-space model). The Rayleigh wave amplitude on vertical component 

is more than that in horizontal component. There is minor decrease of amplitude due anelastic 

damping only. Figure 4 shows the response of basin with 800 m width. Analysis of this figure depicts 

complex mode transformation of Rayleigh wave at southern basin-edge. Reflected Rayleigh wave and 

possible diffracted body waves from the southern basin-edge can be inferred. Further, different modes 

of BTR-wave can also be inferred. The earlier arrivals of BTR waves are less dispersed and 

horizontally polarised. On the other hand, the later arrivals of BTR-waves are highly dispersed and 

vertically polarised.The amplitude of different modes of BTR-wave in basin are highly variable with 

location. Seismic responses of basin with width as 1200 m are shown in figure 5. Similar observations 

can be inferred as was in case of basin width 800 m. There is leakage of BTR-wave in rock at each 

reflection from the north and south basin-edges. There is increase of duration of shaking with the 

increase of width of basin. 



 
 

Figure 3a&b.Simulated response of half-space model on a horizontal array. 

 

 
 

Figure 4a&b.Seismic response of closed basin of width 800 m. 

 

 
 

Figure 5a&b.Seismic response of closed basin of width1200 m. 



Figure 6 shows that spectral amplification of both the components of BTR-waves in different basins. 

On an average spectral amplification of BTR-waves in horizontal components is greater than that in 

vertical components. The largest spectral amplification of the order of 12 was obtained in horizontal 

component at the centre of basin of width 200 m. This amplification is larger than sum of P-wave and 

S-wave ICs. The number of spectral peaks and troughs are increasing with the increase of width of 

basin, probability due to dispersion effect. In case of larger basin-width spectral amplification seems to 

be larger in only horizontal component towards north-edge of basin.  

 

 
 

Figure 6. Spectral amplification of Rayleigh wave in different basins. 

 



The spatial variation of average spectral amplification in basins is shown in figure 7. The average 

spectral amplification was larger in vertical components in case of basins having width less than 200 

m. But, reverse was the case when basin-width was more than 200 m. Further, average spectral 

amplification in horizontal components was larger towards the north basin-edge and reverse is the case 

in vertical component. There is on an average increase of average spectral amplification from south to 

north basin-edge in horizontal component and reverse is the case in vertical component.   

 

 

 
 

Figure 7. Average spectral amplification of Rayleigh wave. 

 

 

5.  DISCUSSION AND CONCLUSIONS 

 

A new (2, 4) 3D staggered-grid FD algorithm is developed based on the GMB-EK rheological model 

in order to incorporate the frequency dependent damping in the time domain simulations (Day and 

Minster, 1984; Emmerich and Korn, 1987; Kristek and Moczo, 2003; Moczo and Kristek, 2005). The 

analysis of various simulated results revealed a complex mode transformation of Rayleigh waves after 

entering into the basin (Kawase, 1993, 2002). The less dispersed earlier arrivals of BTR-wave have 

more amplitude in the horizontal component as compared to the vertical component but reverse was 

the case for the highly dispersed later arrivals of the BTR-waves. The largest spectral amplification in 

horizontal component of the order of 12 was more than the twice of the ICs across the basin-edge.  

  



On an average the average spectral amplification in horizontal component was more except when 

basin-width was less than 200 m. Further, average spectral amplification of horizontal component was 

increasing towards the northern basin-edge and reverse was the case in vertical component. 
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