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SUMMARY: 
A new beam-column joint finite element model is presented for the non-linear analysis of reinforced concrete 
(RC) frames. The proposed model captures the bond-slip of reinforcement and shear deformations of the 
beam-column joint zone to represent the behavior of RC beam-column joints under cyclic loading. The main 
objective of the present paper is to use the analytical RC frame model to evaluate the influence of joint behavior 
on the overall performance of RC frames. Comparison of the analytical and test results reveals that the proposed 
beam-column joint model can reproduce well the fundamental characteristics of non-linear RC beam-column 
joint behavior. 
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1. INTRUDUCTION 
 
Under seismic loading, the deformation of reinforced concrete (RC) frame structures is generally 
influenced by the behavior of the beam-column joints. In addition, the number of RC buildings that 
use high-strength materials is increasing. In RC buildings, the beam-column joint stress increases as 
the cross-section of the RC frame members decreases. In recent years, finite element models have 
been developed that are capable of describing the non-linear behaviors of RC frame structures. 
However, most of the analytical studies of RC frames are based on the assumption of an ideal bond 
between the concrete and the reinforcement, and beam-column joints are generally assumed to be rigid. 
These assumptions are generally reasonable when the non-linear behavior of joint under cyclic loading 
is negligible. However, since the importance of considering the beam-column joint behaviors in 
analysis is increasing, a new analytical model of the beam-column joint that considers joint behavior is 
necessary. 
 
A number of beam-column joint models that consider joint behavior have been proposed. Ghobarah et 
al. (1999) modeled the joint element with joint shear and bond-slip deformations using discrete 
rotational springs and material constitutive models. Elmorsi et al. (2000) proposed a joint model 
composed of 12 nodes and bar elements connected to each node to simulate the bond-slip of 
reinforcement embedded in the joint. Lowes et al. (2003) proposed a joint element that has four nodes 
and a total of 12 degrees of freedom. The element was composed of eight zero-length translational 
springs to simulate the bond-slip of beam and column longitudinal reinforcement, four zero-length 
translational shear springs to simulate the interface shear deformations of the joint panel zone and a 
zero-length rotational spring to simulate the joint shear deformation. However, the analytical method 
employed in these models utilizes linear elastic beam and column elements. Therefore, it is difficult to 
deal with the bond-slip behavior of reinforcement embedded in the beam and column through the joint. 
Limkatanyu et al. (2003) also developed a joint model considering bond-slip response. The model is 
simple and is composed of two elements and uses a rigid link to connect the elements. However, this 
model assumes a rigid joint and so is not able to represent joint shear deformations. 
 



In the present paper, a new beam-column joint element for the finite element method, based on the 
fiber-section model, is proposed in order to model the behavior of an RC beam-column joint under 
cyclic loading. The new model comprises only a small number of nodes for the joint panel and 
reinforcement bar elements. The model captures the bond-slip of the reinforcement and shear 
deformations of the beam-column joint panel zone. The present paper also discusses the material 
models for concrete and steel and constitutive models for reinforcement bond-slip and joint panel zone 
shear deformations to accurately reproduce the cyclic, non-linear behavior of beam-column joints. The 
main objective of the present paper is to use this analytical model to evaluate the influence of joint 
behavior in the overall performance of RC frames. Simulation analyses were performed and compared 
with actual test data in order to validate the proposed beam-column joint model. Comparisons of two 
experimental test results of beam-column joint building subassemblies reveal that the proposed 
analytical model can accurately predict the test behavior and also well represents the detailed 
large-deformation, non-linear behaviors of RC beam-column joints. 
 
 
2. RC BEAM ELEMENT WITH BOND-SLIP 
 
In this section, RC beam elements based on the finite element method for analyzing the behavior of 
RC frames are discussed. Figure 1 shows the nodal displacements of an RC beam element with 
bond-slip and the cross-section of the element. The elements are based on the fiber-section model, and 
the cross-section of element consists of concrete layers and steel layers (total n layers). The element 
has two nodes and 3 + n degrees of freedom are defined at each node. The nodal displacements: axial 
displacement, u, transverse displacement, w, rotate displacement, , and reinforcement bars slip 
displacement, s, are also shown in Figure 1. Using the Euler-Bernoulli beam theory, the incremental 
strain and stress, ci and  ci, respectively, of an arbitrary concrete layer, i, are given as 
 

(2.1) 

 
(2.2) 

 
Similarly, the incremental strain and stress, si and  si, of an arbitrary steel layer, i, are given as 
 

(2.3) 

 
(2.4) 

 
where zci and zsi are the distances the between arbitrary concrete and steel layers, i, and the reference 
axis of the element, and Eci and Esi are the stiffnesses of arbitrary concrete and steel layers i. 
 
The relationship between bond stress, bi, and slip displacement, si, along the anchored bar is assumed 
to be as follows: 
 

(2.5) 
 
where Kbi is the bond stiffness of the arbitrary steel layers, i. 
 
The equilibrium equation for an RC frame element with bond-slip using the principal of minimum 
potential energy, , is expressed as follows: 
 

(2.6) 
 
where Uc and Us are the potential energy in the concrete and the steel, respectively, Ub is the 
potential energy of bond-slip, and V is the potential energy of the external loads. 
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Figure 1. RC frame element with bond-slip 
 
In the finite element method based on the displacement method, the displacements of the element are 
expressed as functions of the nodal displacements through the displacement shape functions. The 
displacement shape functions in the element are defined as a linear function of the axial displacement, 
u, and the reinforcement bond-slip displacement, s, is defined as a cubic function of the transverse 
displacement, w. Thus, the nodal displacements are grouped into element displacement vectors, {u}, 
{w}, and {s}, which are defined as follows: 
 

(2.7) 
 

(2.8) 
 

(2.9) 
 
where  is the rotation displacement of each node and is expressed as      . 
 
The following finite element equation for a beam element with bond-slip is derived by substituting 
Eqns. 2.1 through 2.5 into Eqn. 2.6: 
 

(2.10) 

 
where [K] is the element stiffness matrix corresponding to the element displacement vectors, and {P} 
is the element force vector corresponding to the element displacement vector. 
The basic component of the analytical model for the RC frame used in the present study is a simple 
RC beam and column model composed of RC beam and column elements. 
 
 
3. RC BEAM-COLUMN JOINT MODEL 
 
Figure 2 shows the new RC beam-column joint element with the bond-slip of reinforcement and shear 
deformations of the beam-column joint panel zone. The joint element consists of a beam element and a 
column element. The nodal degrees of freedom of this element are similar to those of the beam and 
column elements. Therefore, the joint element can easily be connected to the beam and the column 
elements in the model, the frame model consisting of these elements can represent the reinforcement 
slip behavior embedded in the beam and column and through the joint. Figure also shows the 
displacement field of the joint element. The element has four nodes, l, r, b, and t. The subscripts in 
figure indicate the node. It is assumed that the joint panel can deform uniformly in shear, and the shear 
strain of the joint element is expressed as a combination of the horizontal shear displacement, ujp, and 
the vertical shear displacement, wjp. Thus, the incremental joint shear strain, , can be calculated 
using the following equation: 
 

(3.1) 
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Figure 2. A new beam-column joint element 
 
where H is height of the joint element, and W is width of the joint element. 
 
Furthermore, it is necessary to define the transformation of nodal displacements in order to express the 
incremental joint shear strain relationship of Eqn. 3.1. The equations for the transformation of nodal 
displacements are expressed through the geometrical relationships of the deformations in Figure 3, as 
follows: 
 
 
 
 
 
 
 

(3.2) 

 
 
 
 
 
 
 
These equations are formulated into the following matrix equation: 
 
 

(3.3) 
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Figure 3. Beam-column joint element incremental nodal displacements 
 
where [I] is the identity matrix, [O] is the null matrix, and the vector and matrix subscripts l, r, b, and t 
refer to the individual nodes of the joint element. 
Eqn. 3.3 can be rewritten as follows: 
 

(3.4) 

 
where {'jp} are the transformed displacement vectors in the joint element, [Tjp] is the transformation 
matrix of the joint element, and {jp} are the displacement vectors of the joint element. In order to 
adapt these relationships for analysis, the following matrix equation is derived using Eqn. 3.4 and the 
finite element equation of the joint element: 
 

(3.5) 

 
where [Kjp] is the stiffness matrix of the joint element, {Pjp} are the force vectors of the joint element, 
and Eqn. 3.5 is the finite element equation of the joint element transformed displacements. This 
equation requires a boundary condition such that the displacements defined according to Eqn. 3.2 are 
zero, in order to satisfy the relationship of Eqn. 3.1. Thus, with the zero-displacement boundary 
condition and solving Eqn. 3.5, joint displacements that include panel zone shear deformations are 
obtained. 
 
4. MATERIAL MODEL 
 
In this section, the material models for concrete, steel, bond-slip of reinforcement, and joint shear 
deformation are discussed. Figure 4 shows the material models used in the present study. 
 
4.1. Concrete Material Model 
 
Figure 4(a) shows the concrete material stress-strain relationship used in the present study. For the 
tension monotonic envelope, a linear stress-strain relationship up to cracking is assumed. After 
cracking, a multi-linear, two-stage stress reduction is used to define the tension degradation. In 
compression, the model is based on the Saenz equation up to the compressive strength, beyond which 
a linear descending branch represents compression softening. 
 
4.2. Steel Material Model 
 
The steel material stress-strain relationship is shown Figure 4(b). For a monotonic response, a bi-linear 
model is used for the stress-strain relationships. For hysteretic response, the Menegotto-Pinto model is 
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(a) Concrete stress-strain relationship                (b) Steel stress-strain relationship 
 
 
 
 
 
 
 
 
 
 
 
 

(c) Bond-slip stress-deformation relationship          (d) Joint shear stress-strain relationship 

Figure 4. Material and constitutive models 
 
used to represent the Bauschinger effect of the steel material. The curve from the point of load reversal, 
P, is expressed as follows: 
 

(4.1) 

 
where 
 
 
 
Rs is the strain hardening factor, Rb is the Bauschinger effect factor, Es is the reinforcement elastic 
modulus, and Es2 is the post-yield modulus of reinforcement. 
 
4.3. Reinforcement Bond-slip Model 
 
The monotonic envelope of the bond stress-slip material model consists of five specific points (Figure 
4(c)). The bond stress and slip of each point are determined according to the bond strength, 3, and the 
slip deformation, s3. In addition, the bond strength may change due to various factors related to the 
bond stress. Therefore, in the present study, we use the bond strength relationship proposed by Lowes 
et al. (2004). The bond strength, 3, and slip, s3, are expressed as follows: 
 

(4.2) 
 

(4.3) 
 
where 1, 2,3,4, and5, are the coefficients expressing the influence of the bond stress, and '3 is 
the basic bond strength. 
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Furthermore, the unloading and reloading paths are based on the model developed by Morita et al. 
(1975). Figure 6(c) shows the typical unloading and reloading paths that start from the monotonic 
envelope. 
 
4.4. Joint Shear Model 
 
The constitutive model developed by Lowes et al. (2003) is used (Figure 4(d)). For defining the 
monotonic envelope of the joint shear stress-strain relationship, it is necessary to perform a 
preliminary analysis, which uses the modified compression field theory (MCFT) proposed by Vecchio 
et al. (1986). This analytical method computes the monotonic envelope of reinforced concrete shear 
behavior using the joint geometry, the material properties, and the reinforcing steel ratio. In addition, 
unloading and reloading paths are modeled in order to express the damage of the joint member 
associated with the deterioration of shear strength and stiffness on the reloading path. In the present 
study, the unloading stiffness is assumed to be the initial stiffness. 
 
 
5. NUMERICAL VERIFICATION OF THE PROPOSED BEAM-COLUMN JOINT MODEL 
 
In this section, comparisons of the results obtained using the proposed beam-column joint model with 
experimental data are presented. The verifications are performed based on the results of an 
experimental test of RC frame subassemblies. 
 
Jiang and Kitayama (1996) tested a series of interior RC beam-column subassemblies. In their study, 
one of these subassemblies, labeled specimen M1, is selected to confirm the validity of the proposed 
beam-column joint model. Figure 5 shows the configuration of specimen M1. Following the original 
research by Jiang and Kitayama, the specimen has two joints in the frame. The beam and column 
cross-sections and the material properties are also shown in Figure 5. The lower end of each column is 
a pin support, and the beam ends are pin-roller supported. The upper ends of the columns were 
subjected to repeated cyclic loading: one cycle at a story drift angle of 1/400 rad and two cycles at 
story drift angles of 1/200 rad, 1/100 rad, 1/50 rad, and 1/25 rad. During the test loading history, the 
inelastic actions occurred mostly around the joints. 
 
Numerical models were developed to simulate the response of the Jiang and Kitayama test specimen 
to the test loading. The element axial length is set to 100 mm. Each outer beam and each column is 
represented by seven elements. The central beam is represented by 14 elements. The cross-sections of 
the beam and column elements are divided into 51 fiber layers. The proposed joint model connects the 
beam and column elements and creates the overall model of the RC frame. Each element was modeled 
using the material, geometric, and design parameters provided by the Jiang and Kitayama test data. 
The loading sequence used for the analysis is reversed cyclic loading using displacement control, 
which is the same as for the experimental test. 
 
Figure 6 compares the experimental and numerical results. This figure shows the test results and the 
analytical results, including both the reinforcement bond-slip and joint shear deformations. In addition, 
the analytical Cases 1 and 2 results are also shown in order to clarify the influence of beam-column 
joint behavior on the performance of the entire RC frame in the analysis. 
 
Case 1: Only bond-slip of reinforcements is considered (without joint shear deformation) 
Case 2: Only joint shear deformation is considered (without bond-slip of reinforcements) 
 
The comparisons reveal that the proposed model can capture the experimental load-displacement 
relationship, but slightly overestimates the unloading stiffness. In particular, comparison with the test 
results reveals that the analytical results can represent well the fundamental characteristics of the test 
results, which show the behavior in terms of both energy dissipation and the pinching effect caused by 
bond-slip and joint shear behavior in the beam-column joint. On the other hand, the results for Cases 1 
and 2 show that the beam-column joint behaviors do not indicate that the hysteretic energy absorption 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. RC beam-column joint subassemblies tested by Jiang and Kitayama (specimen M1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      (a) Test                                  (b) Analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
              (c) Case 1 (without joint shear)                  (d) Case 2 (without bond-slip) 

Figure 6. Test and analytical results of test specimen M1 reported by Jiang and Kitayama 
 
is significantly overestimated. The behavior of both cases is similar until a story drift angle 1/200 (rad). 
However, the cases are not able to re-produce the actual test beyond a story drift angle of 
approximately 1/100 (rad). The differences between the numerical results reveal that it is essential to 
consider the joint behavior, i.e., the bond-slip of reinforcements embedded through the joint and the 
shear deformation of the joint panel, for the accurate analysis of the non-linear behavior of RC frame 
structures. 
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      (a) Test                                  (b) Analysis 

Figure 7. Comparisons of joint shear stress versus joint shear strain 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Comparisons of reinforcement top bar slip at the center of the beam-column joint 
 
Jiang and Kitayama monitored the joint shear strain by measuring the deformation along the diagonal 
of the joint. Figure 7 compares the test and analytical joint shear stress versus shear strain relations. 
The skeleton curve of analysis calculated using the MCFT shows good agreement with the test results. 
However, since the mode in the present study assumes that the unloading stiffness is equal to the 
initial stiffness, the analytical unloading stiffness is higher than the test stiffness. The high unloading 
stiffness of the joint shear behavior may cause an overestimation of the energy absorption of the RC 
frame analytical response. Consequently, in the future, we intend to improve the modeling of the 
unloading stiffness behavior. However, the shear strain level of each load cycle computed by the 
proposed joint model is in fair agreement with test results. Therefore, this result reveals that the new 
joint model can reproduce well the shear behavior of the beam-column joint panel in the RC frame 
structure. 
 
Figure 8 compares the test and analytical reinforcement top bar slip at the center of the beam-column 
joint. The horizontal axis indicates the loading cycles at the time of peak positive loading. This figure 
also shows the analytical result assuming no joint shear deformation. The analytical response with 
joint shear deformation shows quite good agreement with the test response. Both results for the 
reinforcement bar slip are contained within the range of approximately one millimeter. In contrast, the 
rigid joint analytical result significantly overestimates reinforcement bar slip as early as a story drift 
angle of 1/100 rad. The results clearly indicate the contribution of beam-column joint shear 
deformation to reinforcement bar-slip. In general, joint shear deformation results in a reduction in the 
beam and column hinge inelastic responses. As such, the reinforcement bar-slip may be reduced by the 
reduction in beam and column deformations. 
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6. CONCLUSION 
 
A new beam-column joint model for large-deformation, non-linear behavior of reinforced concrete 
frames under cyclic loading has been developed. The new model consists of a multi-node joint panel 
zone and reinforcing bar elements. The model captures the bond-slip of reinforcement and shear 
behaviors of the beam-column joint. Simulation analyses were performed and compared with actual 
test data to validate the proposed beam-column joint model. Comparisons of the responses for an 
experimental test of beam-column joint building subassemblies reveal that the analytical model using 
the new simple beam-column joint element can accurately predict the test behavior and well represents 
the detailed large-deformation, non-linear behaviors of RC beam-column joints. And comparisons of 
the analytical and test results reveals that the proposed beam-column joint model can reproduce well 
the fundamental characteristics of non-linear cyclic RC beam-column joint behavior in terms of both 
energy dissipation and pinching effect caused by bond-slip and joint shear behavior in the 
beam-column joint. If bond-slip and joint shear deformations are not considered, then the hysteretic 
energy absorption is significantly overestimated. 
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