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SUMMARY  
The near-field strong motion has the characteristic of pulse-type waveform and long pulse period, which causes 
the midd le-story failu re of the framed structures in many great earthquakes. This new failure pattern is difficult  
to explain well based on the traditional v ibration method, which maybe attributes to the initial wave effect. In  
order to explain the middle-story failure of the framed structures impacted by near-field strong motion, 
elastic-plastic wave propagation in framed structures is investigated by finite d ifference method. Firstly, the 
elastic wave propagation in framed structures by finite d ifference method is studied. The consideration of 
longitudinal, torsional and flexural waves in rigid frames yields the fin ite difference equation for wave 
propagation in framed structures, The case study shows that the finite d ifference method can simulate the elastic 
wave propagation in framed structures effectively. Then, a  double-deck difference equation for the elastic-p lastic 
wave propagating in  framed structures is structured by a new finite difference method, which only d iscretizes in  
the spatial direction and regards the variable quantity in  the time direct ion as acceleration. It is assumed that the 
constitutive relations of material are independent in three directions, where bilinear restoring force 
characteristics and Massing rule are adopted. Lastly, the case study shows that the new finite difference method 
can simulate the plastic wave propagation in framed structures effectively, which will benefit the investigation of 
the damage mechanism of structures impacted by the near-field strong earthquake motion. 
 
Keywords:   near-field,    elastic and plastic waves,   rigid frame,   finite difference method   Wilson-θ 
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1. INTRODUCTION 
 
The scientific community had paid more and more attention to the near-field problems since the Port Hueneme 
Earthquake. The near field earthquake is a very special kind of earthquake whose characters are very different 
from the common far field  earthquake because of the focal mechanis m, the relationship between the direction of 
fault rupture and field, the relative orientation of breaking plane. The most notable characters of near-field  
earthquake is pulse type ground motion which is caused by the orientation effect and sliding effect (S. Li & Xie, 
2007; X. L. Li & Zhu, 2004a, 2004b; Tao, Fengxin, & Yushan, 2006).According to the peak ground accelerat ion, 
peak ground velocity, and ground displacement around the fault of Chi-Chi Earthquake, Shin(Sh in et al., 2001) 
and Wang(G. Q. Wang, Zhou, Zhang, & Igel, 2002; J. H. Wang, Huang, Chen, Hwang, & Chang, 2002) showed 
that the main influence factors of acceleration response spectrum are seismic source and field effect; the former 
has an effect on the low frequency spectrum and the latter influences the high frequency spectrum. 
 
The damage patterns of structures in the near field are very special. The most representative building is a seven 
floor hotel in the California, which was destroyed in the San Fernando Earthquake and Northridge Earthquake. 
The main damage area is the forth floor, which is still hard to explain the mechanism of special damaged 
patterns by vibration-based methods.(Ivanovice, Trifunac, Novikova, Gladkov, & Todorovska, 2000;  Trifunac, 
Ivanovice, & Todorovska, 2001a, 2001b). From the v iew of waves propagation, Todorovska et al (Todorovska & 
Trifunac, 1990) investigated the P-delta effects in the soft first floor and Kolher(Kohler, Heaton, & Bradford, 



2007) suggested that the system identificat ion from wave-propagation effects should be included into the 
theoretical dynamic analysis simulations of the building's response. Gicev and Trifunac(Gicev & Trifunac, 
2006a, 2006b) introduced a one-dimensional continuum model for the building with bilinear constitutive 
relationship and the nonlinear response was analyzed by the finite difference method. 
 
In order to exp lain the middle-story failure of the framed structures impacted by near-field strong mot ion further, 
elastic-plastic wave propagation in framed structures is investigated by finite difference method in this paper. 
The consideration of longitudinal, torsional and flexural waves in rigid frames yields the fin ite difference 
equation for wave propagation in framed structures, The case study shows that the finite difference method can 
simulate the elastic wave propagation in framed structures effectively. Then, a double-deck difference equation 
for the elastic-plastic wave propagating in framed structures is structured by a new finite d ifference method, 
which only discretizes in the spatial direct ion and regards the variable quantity in the time d irection as 
acceleration. It is assumed that the constitutive relations of material are independent in three directions, where 
bilinear restoring force characteristics and Massing rule are adopted. Lastly, the case study is taken to validate 
the new finite difference method. 
 
 
2.MODLE AND EQUATION 
 
2.1.Global and local coordinate system 
 
For the rigid frame structures, the global coordinate system and the local coordinate system are defined as shown 
in Fig. 1. the member is expressed by node codes and the global coordinated system is ( , , )x y z . In the local 
coordinated systems ( , , )JKx y z , the JKx -axis is coincided with the shaped mandrel of member bar and the 

direction is from J to K;  JKy -axis and JKz -axis are coincided with two principal axes of cross section, which  

means that plane -JK JKx y and plane -JK JKx z are two bending principal p lane. It is assumed that the shear force 
center is coincided with the cross section center of figure in order to insure that the curvature moment and twist 
motion are independent. 
 

 

 
Figure 1.Global and local coordinate system 

 
We consider three kinds of waves, longitudinal wave, torsional wave, and flexural wave in a limited member bar. 
As a spatial member bar there are six basic parameter for every point of the object, we define that 

JK
xu , JK

yv , JK
zw  are the linear d isplacement of JKx , JKy , JKz axis and JK

xθ , JK
yφ , JK

zψ are the angular 

displacement which are caused by the torsional moment in JKx -axis, the bending moment in JKy -axis ,and 
JKz -axis. Correspondingly,  there are six force JK

xF , JK
yF , JK

zF , JK
xM , JK

yM , and JK
zM . The relat ionship of 

generalized displacement vector  and force vector  in the local coordinated systems could be expressed as: 
 
 JK JK=U HU    (2.1) 
 JK KJ=F HF     (2.2) 
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{ 1, 1, 1, 1, 1, 1}diag= − − − −H .The relat ionship of JKU  and JKF  between the global and local  
coordinated systems can be expressed as 
 
 JK JK JK=U K U   (2.3) 
 JK JK JK=F K F    (2.4) 
 
2.2.Definite solution problem of member bar movement 
 
The equations of mot ion for the single member bar IJ of three kind of waves and the relationship of generalized 
displacement and generalized force are 
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Equations (5)~(9)  could be written in matrix form 
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It is assumed that the initial displacements and velocities of all members are zero, which can be expressed as 
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There are three kinds of boundary conditions which could be written as the common form:  
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The inside joint conditions are the composition of forces of all the member bars at joint J must be zero in the 
global coordinate and the displacement vector of all member bars at jo int I must be the same. The 
function ( , )iJ Kϕ is defined as : 
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The inside connectable condition could be expressed as 
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2.3.Elastic Finite Difference Method 
 
Equation (2.10) could be expressed as the below by the finite difference method:  
 1 1

1 1[ ] [ ] [ ] [ ] [ ]JK k JK k JK JK k JK JK k JK JK k
j j j j j
+ −
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Where 2 1 2[ ] (2 ) /[2( ) ]JK JK JK JK JK JKh hτ −= −E C A B , 2 1 2[ ] (2 ) /[2( ) ]JK JK JK JK JK JKh hτ −= +G C A B , 

2 2 2 1 2[4 4 2 ( ) ][ ] /[2( ) ]JK JK JK JK JK JK JK JKh h hτ τ −= − −F C A D C .The JKh and 2τ are separate the space distance 
and the time distance of member bar JK . The i and j  means the distance point and time point of finite  
difference method , respectively. 
 
For the single member bar, it is assumed that the element is divided as m fin ite difference points and the serial 
number is from1to m , so we could get the expression of a single member bar JK : 
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where the subscript in and bn mean the boundary and the inside difference points, the matrixes JKH and JKI are 
square matrixes of 6m× rank (1,1)JK JK=I E , ( , )JK JKm m =I G , ( , )JK JKq q =H F  

( , 1)JK JKq q + =H G , ( 1, )JK JKq q− =H E , ( 1 )q m=  .The other element of JKH and JKI is zero. 
 
For the rigid frame, the final finite difference format could be shown as: 
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The forward finite difference method could be used for Eq. (2.14), and we can get: 
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By Eq. (2.14)~ (2.16), the relationship of 0[ ]iJK k

IU  and 1[ ]iJK k
IU could be expressed as: 
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According to Eq. (2.22), the relationship between inside jo int points of rig id frame and inside fin ite difference 
points of element could be shown as: 
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According to Eqs. (2.19) and (2.22), the final form of elastic problem is : 
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Based on Eq. (2.11), Eq.(2.13) could be shown as the finite difference form: 
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By Eqs. (2.23) and (2.24), the problem elastic wave propagation in rigid frame could be solved. 
 
2.4.Elastic-Plastic Difference Method 
 
The new difference technique is based on the traditional difference method and Wilson θ−  method, of which 
the space distance is fixedness, and the distance of time is changed. Because of the modulus and coefficient 
matrixes is not constant, the matrixes and vectors should add the superscript k to means the time po int in the 
equation. The new form of equation (2.10) and (2.11) are: 
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The new finite difference form of Eq. (2.25) is: 
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In comparison with Eqs. (2.18) ~(2.23), the difference equation for elastic-plastic problem is expressed as 
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The structural rule of coefficient matrix of Eqs. (2.25) ~ (2.28) is the same with the elastic part. 
 



Eq. (2.28) could be further discretized in time domain based on Wilson θ−  method  
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where 21 6 /( )A tθ= ∆ , 2 6 /( )A tθ= ∆ , 23 6 / ( )A tθ θ= ∆ , 4 6 / ( )A tθ θ= − ∆ , 5 (1 3/ )A θ= − , 6 / 2A t= ∆ , and 

27 ( ) / 6A t= ∆ . 
 
 
3.EXAMPLES 
 
To validate the finite difference method to simulate the process of wave propagation in structures, a rigid frame 
is shown as figure 2. The space frame is composited by four member bars with the same E , G , ρ , and L . The 
plastic modulus are 0.4E  and 0.4G . The velocities of longitudinal and flexural wave of member bar are 1c  
and 2c . All the boundary points are fixed. The displacement pulse 0 sin(10 ),(0 0.1)u pi t t× × < <  is input 
along the z -axis at node “1” for initial condition. The d imensionless time is defined as 1/( / )T t L c= . We 
consider two cases, the purely elastic and elastic-plastic. 

 

 
Figure 2. Frame structure, pulse, restoring force diagram 

 
Figure 3(a) shows the displacement along z -axis of member bar 54 at the moment 1.3,2.3,3.2,3.6T = . The 
initial longitudinal wave pass the joint 5 at 1T = and then the longitudinal amplitude of pole 54 is reduced to 
60% of the init ial value. When 2T = , the reflect ion leads to the change of direction, but the amplitude is 
remain  unchanged. The direct ion and amplitude are all different between 2.3T = and 3.2T = as a result of the 
influence of joint 5 at the moment of 3T = . From 3.2T = to 3.6T = , there are no influence factors, so the 
direction and amplitude of longitudinal wave are not changed. Figure 3(b) shows that there are flexural waves in  
x -axis and y -axis o f member bar 54  after 1T = , because of the transmission effect of the inside connected 

joint 5 . In the d irection  of x and y , the member bars 52and 53block the movement o f joint 5 so that the 
amplitude is too small to distinguish. We could consider that there is no flexural in member bar 
54approximately. 
 

U  

F
 
 

0u

 
 

3
 
 

4
 
 

1 
 

5
 
 

y  
 

z  

x  
 

2
 
 

0.1L  



 

 
(a)                                            (b) 

Figure 3. The elastic wave motion response of member bar 54 
 
It is shown in the Fig.4(a) that the line d isplacement along z -axis of member bar 52 at the moment 

1.3,2.3,3.2,3.6T = . Because of the joint 5 is the common node, the amplitude of flexural wave in member bar 
52 and longitudinal wave in member bar 54 are the same when 1.3T = . The frequency dispersion 
characteristics of flexural wave is well expressed in Fig 4(a). By contrast with the four moment, the amplitude 
becomes smaller and the width of pulse is increasing. Figure 4(b) shows the longitudinal wave in x -axis and 
flexural wave in y -axis. As a result of the direct ion of incident pulse is along z -axis and the x -axis and 
y -axis are blocked by member bars 52 and 53,the line displacement amplitude is almost zero. 

 

 

(a)                                            (b) 
Figure 4. The elastic wave motion response of member bar 52 

 

 

(a)                                                (b) 
Figure 5. The elastic-plastic wave motion response of member bar 52 

 



Figure 5 shows the elastic-plastic wave spread in frame. It is assumed that the member bar 51 is elastic and all 
the other member bars are elastic-plastic. In spite of the vibration errors of numerical calcu lation is large and the 
theoretical defect, the figures could also show the tendency of wave spread. 
 
Compared with Figs. 4 and 5, the amplitude of plastic wave is bigger than the elastic, which shows that the 
process of plastic is more serious but the velocity of propagation is slower.  
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