
Period Shifting Effect on the Corner 

 

Displacement Magnification of 
One-Storey Asymmetric Systems 
 
 
T. Trombetti, M. Palermo, S. Silvestri and G. Gasparini 
Department DICA, University of Bologna, Italy. 
 

 
 
SUMMARY: 
This paper gives a new insight into the dynamic behaviour of one-storey eccentric systems, with particular 
attention devoted to provide a comprehensive physically-based formulation of the maximum corner 
displacement amplification, which involves three contributions (translational response, torsional response and 
their combination). It is shown that the largest amplifications, which mainly occur for the class of torsionally-
flexible systems, are due to the translational contribution through to the shift in the fundamental period of the 
eccentric system with respect to the one of the equivalent not-eccentric system. A simplified method for the 
estimation of the maximum corner displacement based on the physical properties of the system is finally 
obtained. 
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1. INTRODUCTION 
 
Since the late 1970s, it is known that structures characterized by non coincident center of mass and 
center of stiffness, commonly defined as eccentric (or asymmetric) systems, when subjected to 
dynamic excitation develop a coupled lateral-torsional response that may considerably increase their 
local peak response, such as the corner displacements (Kan and Chopra 1977 (a and b) Rutenberg 
1992, Hejal and Chopra 1987). 
 
In order to effectively apply the performance-based design approach to seismic design, there is a 
growing need for code-oriented methodologies aimed at predicting deformation parameters. Thus, the 
estimation of the displacement demand at different locations, especially for eccentric structures, 
appears a fundamental issue. Furthermore, the ability to predict the torsional response of eccentric 
systems can be also useful to improve the capability of one of the most actually used seismic design 
approaches ( i.e. push-over analysis, Perus and Fajfar 2005). 
 
Since the early 1990s Nagarajaiah et al. 1993, investigating the torsional coupling behavior of base-
isolated structures, observed that, for the specific class of torsionally-stiff asymmetric structures, the 
maximum center mass displacement can be well approximated by the maximum displacement of the 
equivalent not-eccentric system. 
 
In previous research works (Trombetti 1994, Trombetti and Conte 2005, Trombetti et al. 2008), the 
authors identified a structural parameter, called “alpha”, capable of measuring the attitude of one-
storey asymmetric systems to develop rotational responses and proposed a simplified procedure, called 
“Alpha-method”, for the estimation of the maximum torsional response. In its original formulation, the 
“Alpha-method” was based on the aforementioned assumption of equal maximum displacement 
response between the eccentric system and the equivalent not-eccentric system. 
 
The object of the present paper is to provide a more comprehensive investigation on the dynamic 



properties of one-storey eccentric systems, with specific focus on the class of the so-called torsionally-
flexible systems, which showed a greater attitude in developing consistent corner displacement 
amplifications (Trombetti et al. 2008). 
 
 
2. PROBLEM FORMULATION 
 
Let us consider the one-storey eccentric structure (i.e. a system characterized by non-coincident center 
of mass, CM, and center of stiffness, CK) displayed in Fig. 2.1 (the origin of the reference system is 
located at CM). It is assumed that the diaphragm is infinitely rigid in its own plane, and that the 
lateral-resisting elements (e.g. columns, shear walls, …) are massless and axially inextensible. The self 
torsional stiffness (kθ) of each lateral-resisting element is also neglected. Under this assumption, the 
following three degrees of freedom are assumed: (i) longitudinal center mass displacement, uy,CM, (ii) 
transversal center mass displacement, ux,CM , (iii) center mass rotation, uθ,CM , which coincides with the 
floor rotation, uθ. The system is subjected to a one-way dynamic excitation (e.g. free vibrations or 
seismic input) along the longitudinal direction (namely, the y-direction). 
 
From simple trigonometric relationships, with reference to the plan view of the system given in Fig. 
2.1, the longitudinal corner side displacement, i.e. the displacement of the flexible side of the system 
(e.g. point B, the farther from CK), uy,B, at any generic instant t, is given by: 
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Estimating the corner displacement according to Eqn. 2.1 requires the development of time-history 
analyses. Nevertheless, the practical engineer is interested in the absolute maximum value, uy,B,max, of 
the corner displacement response history. Thus, the main purpose of this research work is to provide a 
simple formulation for the evaluation of uy,B,max, starting from: 
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which highlights that the maximum corner displacement depends on the following three contributions: 

• translational contribution, as given by the maximum absolute displacement response uy,CM,max  
of the center of mass governed by period shifting effect (see section 4); 

• torsional contribution, as given by the product of the maximum absolute rotational response 
uθ,max  and the lever arm L/2 (see section 5); 

• combination of the translational and torsional contributions of above, as indicated by symbol 
⊕ (see section 6). 
 

Manipulation of Eqn. 2.2 leads to: 
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Introducing the following parameters: 
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Figure 2.1. Plan view of the in-plane eccentric system with the indication of the degrees of freedom 
 

gyration of the system); 
• B, which is a parameter of simultaneity accounting for the time combination of the 

translational and torsional contributions; 

• 
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= =  which indicates a shape factor of the system. 

 
Eqn. 2.3 reduces to: 
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The objective of the work is to quantifies the value of ( )1  uA Bδ α φ⋅ + ⋅ ⋅ ⋅  that represents the corner 

displacement magnification with respect to the equivalent N-E system. 
 
 
3. THE DYNAMIC PROPERTIES OF ONE-STOREY ECCENTRIC S YSTEMS 
 
3.1. The equation of motion 
 
Under the following additional (with respect to those of section 2) assumptions: 

• the total lateral stiffness k of the system is the same along the x- and the y-direction (i.e. 
k=kx=ky, where kx and ky are the translational stiffness along the x- and the y-direction, 
respectively); 

• the rotational response uθ developed under dynamic excitation is small enough to allow the 
approximation  ; 

• the longitudinal eccentricity is equal to zero (i.e. Ey = 0). This case maximizes the rotational 
response of the system in free vibrations (Trombetti and Conte 2005); 

the dynamic coupled lateral-torsional response of the system under consideration (Fig. 2.1) is 
governed by the following set of coupled differential equations of motion (Trombetti and Conte 2005), 
written in a reference system with origin located at CM: 
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where: 



 m is the mass of the system; ex=Ex/De is the relative eccentricity (hereafter it will be simply indicated 

as e); De is the equivalent diagonal equal to 12ρm; θ θω ωΩ = /
L

 is a dimensionless parameter that 

measures the torsional flexibility of the system (ωL and ωθ are the uncoupled translational natural 
frequency of vibration and the uncoupled torsional natural frequency of vibration, defined in a 
reference system with origin located at CK, respectively); [C] is the damping matrix (classical 
damping is assumed). 
 
The parameter Ωθ represents a physical property of the eccentric system, leading to the two following 

classes: (i) torsionally-stiff systems: θΩ ≥1.0  ; (ii) torsionally-flexible systems: θΩ <1.0   

 
3.2. The eigenproblem 
 
The solution of the eigenvalues problem governing the undamped free vibrations of the system gives 
the following closed-form expressions of natural frequencies ω1, ω2, ω3, normalized with respect to the 
uncoupled longitudinal frequency ωL and squared (Trombetti and Conte 2005): 
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Fig. 3.1 a plots the normalized natural frequencies versus e and Ωθ showing that: (i) ω2=ωL; (ii) ω1 is 
generally close to ωL; (iii) ω3 can be quite larger than ωL. 
 
The solution of the eigenproblem also provides the following vibration mode shapes (eigenvectors): 
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The first and third modes of vibration are coupled modes (i.e. translational component in y-direction 
coupled with a torsional component), while the second mode is purely translational in x-direction, due 
to the assumption of null eccentricity in y-direction. 
 
From Eqn. 3.2 the following expressions of the natural periods of vibration, normalized with respect to 
the uncoupled lateral period TL, can be obtained (Fig 3.1 b): 
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3.3. The modal contribution factors 
 
In order to understand how each mode of vibration contributes to the dynamic response of the system, 
the closed-form expressions of the modal contribution factors MCFi, i = 1,2,3, activated by a dynamic 
input characterized by influence vector {0,1,0} (i.e. input only along the y-direction), have been 
derived (Fig. 3.1 c): 
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Inspection of Fig. 3.1 c leads to the following observations: 

• MCF2 = 0 for all values of e and Ωθ  results from the assumptions of null eccentricity in the y-
direction and influence vector along the y-direction; 

• torsionally-stiff systems are principally governed by the first mode of vibration T1 that, as 
showed in Fig. 3.1.a, is close to the second period of vibration, T2, which in turn is equal to the 
uncoupled lateral period, TL; 

• torsionally-flexible systems with small eccentricity (e < 0.1) are mainly governed by the third 
mode of vibration that is approximately equal to TL; torsionally-flexible systems with high 
eccentricity (e > 0.3) are substantially governed by the first mode of vibration that may be 
considerably higher than TL; for torsionally-flexible systems characterized by eccentricity e 
between 0.1 and 0.3 both T1 and T3 contribute to the dynamic response of the system. 

 
 
4. THE DISPLACEMENT AMPLIFICATION AT THE CENTER MAS S: PERIOD SHIFTING 
 
In the case of seismic excitation, the maximum center mass displacement can be predicted using the 
SRSS modal combination rule (Chopra 1995): 
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where Sd(Ti) indicates the spectral displacement response at Ti (i=1,2,3). Under the assumption that 
Sd(T) is a linear function of the period T (Sd(T)=ϕ ·T) Eqn. 4.1 yields to: 
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Dividing Eqn. 4.2 by the center mass displacement of the equivalent N-E system (uy,CM,max,N-E) the 
following closed-form expression of the displacement amplification, δ, as a function of e and Ωθ (Fig. 
5.1 a) can be derived: 
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(a)                                             (b)                                                    (c) 
Figure 3.1. (a) normalized natural frequencies; (b) normalized natural periods; (c) modal contribution factors 

 
It should be noted that, for sake of conciseness, Eqn. 4.3 is not directly expressed in terms of Ωθ, but in  
terms of the normalized frequencies Ω1 and Ω3 (functions of e and Ωθ). Inspection of Fig. 5.1.a reveals 
that: 

• for a wide region of e and Ωθ, δ is close to one; 
• for high values of eccentricity e coupled with low values of Ωθ, the displacement amplification 

δ can achieve values also larger than 5 (period shifting effect). 
 
 
5. THE MAXIMUM ROTATIONAL RESPONSE 
 
5.1. Undamped free vibration 
 
In a previous research works (Trombetti and Conte 2005), the authors identified a rotational parameter 
called “alpha”, governing the maximum rotational response of eccentric systems: 
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In the case of undamped free vibrations from a given initial deformation, the alpha parameter assumes 
the following closed-form expression (Trombetti and Conte 2005): 
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where the subscript u indicates “undamped conditions”. 
 
Fig. 5.1 b shows that αu is bounded between zero and one. The above introduced rotational parameter 
allows to express the maximum rotational response as follows: 
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(a)                                             (b) 
Figure 5.1.  (a) δ versus e and Ωθ; (b) αu versus e and Ωθ 

 
5.2. Damped seismic response 
 
In the case of damped systems subjected to seismic excitation, the alpha parameter is indicated as: 
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where the subscript d,eqke indicates “damped conditions and earthquake input”. 
By posing: 
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the maximum rotational response experienced by a damped eccentric system under seismic excitation 
can be expressed by the following simple relationship: 
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Parameter A should be obtained and calibrated by means of extensive numerical simulations, which 
are currently under development. Preliminary results indicates that for almost all values of e and Ωθ 
parameter A is upper bounded by 1 (isolated cases of A <1 appeared for torsionally-flexible system). 
 
 
6. THE COMBINATION OF THE MAXIMUM DISPLACEMENT RESP ONSE WITH THE 
MAXIMUM ROTATIONAL RESPONSE 
 
6.1. Undamped free vibration 
 
The solution of the equations of motion of the studied eccentric system, in the case of undamped free 
vibrations from a given initial displacement a along the y-direction, is given by (Trombetti and Conte 
2005): 
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where R1 and R3 are defined as follows (Trombetti and Conte 2005): 
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Careful inspection of Eqns. 6.1 leads to the following observations: 

• the maximum longitudinal displacement is developed for 1( )t nω π=  and 3( )t mω π=  (with n 
and m both odd or both even) and is equal to a. The corresponding rotation is zero; 

• the maximum rotation is developed for 1( )t nω π=  and ( )3( ) 1t mω π= +  (with n and m both 

even or odd) and is equal to (a/ρm)·au. The corresponding longitudinal displacement, 

,maxy,CM@uu
θ

, is equal to a·(R1-R3). 

 
Based on the above mentioned observations, two limit assumptions (HP1 and HP2) are introduced: 

1. the maximum corner displacement is calculated supposing a full correlation between the 
maximum rotational response and maximum center mass displacement response (HP1): 
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which can be easily rewritten as: 
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2. the maximum corner displacement is calculated combining the maximum rotational response 

with the center mass displacement achieved at the instant of maximum rotation, 
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which can be easily rewritten as: 
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It is clear that Eqns. 6.5 and 6.6 represent an upper bound and a lower bound for the maximum corner 
displacement, respectively; thus: 
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The following closed-form expressions of the corner displacement amplifications result from the two 
limiting assumptions HP1 and HP2 (Figs. 6.1): 
 
Corner displacement magnification with respect to the center mass displacement (Figs. 6.1 a and b): 

( )

, ,max, 1
1

, ,max

, ,max, 2
2 1 3

, ,max

1

-

y B HP
u

y CM

y B HP
u

y CM

u

u

u
R R

u

α φ

α φ

∆ = = +

∆ = = +
 (6.8) 

Corner displacement magnification with respect to the center mass displacement of the equivalent N-E 
system (Figs. 6.1 c and d): 
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Careful examination of the graphs plotted in Figs. 6.1 lead to the following fundamental observations: 

• both ∆1 and ∆2 are larger than one for all values of e and Ωθ . This result justifies the 
introduction of the assumption HP2 (lower bound). The maximum corner displacement 
amplifications ∆1 and ∆2 are limited to values around 2.3 and 1.6, with reference to HP1 and 
HP2, respectively; 

• both ∆N-E,1 and ∆N-E,2 are basically governed by δ (i.e. period shifting). In detail: (i) high 
torsionally-stiff systems (i.e. Ωθ >1.5) exhibit maximum corner displacement amplifications 
approximately equal to 2.5 and 2.0 with reference to HP1 and HP2, respectively; (ii) low 
torsionally-stiff systems (Ωθ ≅1) exhibit maximum corner displacement amplifications 
approximately equal to 3.5 and 3.0 with reference to HP1 and HP2, respectively; (iii) 
torsionally-flexible systems exhibit maximum corner displacement amplifications larger than 
5; 

 
6.2. Damped seismic response 
 
In the case of seismic excitation, a parameter of simultaneity B is introduced to account for the time 
correlation between the rotational and displacement seismic responses. 
 
Parameter B should be obtained and calibrated by means of extensive numerical simulations, which 
are currently under development. However, it should be noted that parameter B is certainly less than 1 
and therefore, from a conservative design point of view, it can be taken equal to 1. 
 
 
7. “ALPHA METHOD” FOR THE PREDICTION OF THE MAXIMUM  CORNER 
DISPLACEMENT OF ECCENTRIC SYSTEMS 
 
In a previous research work (Trombetti and Conte), the authors proposed a simplified method, called 
“Alpha-method”, for the prediction of the maximum rotational response of eccentric systems. The 
original formulation of the method was developed limiting to the study of torsionally-stiff system and 
thus assuming that the maximum center mass displacement of the eccentric system can be reasonably 
approximated by the corresponding displacement of the equivalent not-eccentric system. 
 
The results presented in this paper lead to comprehensive understanding of the dynamic behaviour of 
eccentric system. The analytical tools detailed in previous sections allow to extend the original 
formulation of the “Alpha-method” to a generic eccentric system, removing the assumption of equal 
center mass displacement between the eccentric system and its equivalent N-E system. 

 

 
(a)                                                                                          (b) 



 

 
(c)                                                                   (d) 

Figure 6.1. Corner displacement magnification with respect to: (a) center mass displacement based on HP1; (b) 
center mass displacement based on HP2; (c) center mass displacement of the equivalent N-E system based on 

HP1 (d) center mass displacement of the equivalent N-E system based on HP2 
 
On the light of all the results reported in previous sections, the following formula for the evaluation of 
the maximum corner displacement of an eccentric system under seismic excitation is proposed: 
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 (7.1) 
 
CONCLUSIONS 
 
This paper provides a comprehensive insight into the dynamic behaviour of one-storey eccentric 
systems, aimed at increasing the knowledge about this class of structures, as well as providing simple 
tools for their seismic design. For the specific case of undamped eccentric systems in free vibrations, 
closed-form expressions for an upper bound and a lower bound of the maximum longitudinal corner 
displacement have been derived. Based on these results, a simplified approach for the seismic design 
of eccentric systems, originally proposed by the author for the evaluation of the torsional response of 
torsionally-stiff eccentric systems, has been revised accounting for all classes of eccentric systems. 
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