
Abutment Reactions and Higher Modes of Transverse 

 

Vibration of Continuous Bridges 

 
 

 

G. Della Corte & R. De Risi 
Department of Structural Engineering, University of Naples Federico II, Italy 

 

 

 

 

 

 
SUMMARY: 

The paper discusses the problem of predicting abutment reactions of continuous bridges through a simplified 

method of analysis based on the response spectrum method. The feasibility of substituting the real discrete 

support system with a continuous (Winkler) spring system is discussed. Limitations of this approach are 

evaluated by comparing the approximate solution with the theoretical correct one, which is evaluated through 

numerical finite element model analysis. Both linear and nonlinear system response is addressed. The 

comparison shows that the Winkler simplification is good in case of sufficiently small intermediate support 

stiffness (e.g. in case of deck isolation) and/or large number of spans. However, there will always be an upper 

bound to the intermediate support stiffness beyond which the error linked to the Winkler model will start to 

increase significantly becoming unacceptably large.  
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1. INTRODUCTION 

 

Transverse vibrations of continuous bridges can be assimilated to those of continuous beams on 

flexible supports. To reduce transmission of seismic forces to substructures, the deck is frequently 

isolated by using specific isolation and/or energy dissipation systems. A special case is represented by 

partially-isolated bridges where the deck is isolated for transverse motion only at intermediate pier 

supports while it is fixed at the abutments. This design option may be found advantageous in order to 

eliminate the need for transverse displacement joints at the abutments. Partial isolation makes the deck 

displacement pattern non uniform and requires to account explicitly for the deck flexibility. A great 

deal of research studies and codification (AASHTO, 2010; CEN, 2005) is mainly concerned with 

fully-isolated bridges while some recent research efforts have been addressed to cover also the 

alternative of partial isolation (Tsai, 2008, Tubaldi and Dall’Asta, 2011). Partial isolation makes the 

bridge deck transverse motion similar to that of a continuous beam with intermediate flexible supports 

and fixed at the abutments. Abutment reactions play a key role in this system, both because they 

implicitly affect deck displacements and because they are needed in order to design end restrains and 

abutment foundations. This paper discusses one possibility to simplify the analysis of such bridge 

types by substituting the real discrete pier-isolator subsystem reactions by a continuous Winkler-type 

elastic reaction system. Previous results from nonlinear analysis of five case studies (Della Corte et al., 

2012) has clearly highlighted that abutment reactions are (i) significantly affected by higher modes of 

vibration and (ii) accurately evaluated by the Winkler simplification if the effective stiffness of pier 

isolator subsystems is sufficiently small. For larger stiffness underestimation of such reactions 

generally occurs. The level of underestimation depends on the relative pier/isolator-to-deck stiffness 

and on the number of spans.  

 

Though the objective of the study is to establish the feasibility of using the simplified method of 

analysis for isolation systems, the discussion is general and the results are valid also for non isolated 

bridges.  



2. OUTLINE OF A SIMPLIFIED METHOD OF ANALYSIS 

 

A simplified method for transverse response analysis of multi-span continuous bridges with isolation 

bearings at intermediate piers and laterally restrained at the abutments has been presented in Della 

Corte et al. (2012). The method is based on the assumption that the actual displacement pattern of the 

deck can be approximated as the summation of a finite number of sinusoidal contributions. The 

amplitude of each contribution is determined from the response spectrum based on an effective period 

of vibration and damping ratio. The latter are evaluated per each sinusoidal “mode of vibration”. The 

approximation of sinusoidal modes of vibrations holds true in case of an infinite number of 

intermediate supports with given stiffness per unit length, i.e. for a beam on elastic Winkler-type 

support. Therefore, it is expected that the method converges to the real solution in case of a large 

number of spans, i.e. a large number of intermediate supports. However, it is also noted that in case of 

isolated bridges, the intermediate support stiffness is generally very small in case of a full activation of 

the isolation system. Therefore, the method may work well also for a limited number of spans, but 

with a small effective stiffness of the intermediate supports. In this Section, the simplified analysis 

procedure is summarised. An evaluation of the limitations linked to the sinusoidal representation of 

the displacement patterns, i.e. to the Winkler model, is discussed at subsequent Sections. 

 

Figure 1 illustrates schematically the basics of the adopted calculation procedure using the spectral 

acceleration (Sa) vs. spectral displacement (Sd) representation. The calculation process is iterative and 

follows the fundamental steps outlined hereafter: 1) starting with the initial stiffness (i.e. frequency, 

ω0
2
) and damping ratio (ξ0), the first trial displacement demand is obtained from the corresponding 

spectrum; 2) effective stiffness and damping ratio (linearized system properties) corresponding to the 

trial displacement are calculated; 3) using the effective stiffness a new estimate of the displacement 

demand is obtained from the demand spectrum corresponding to the effective damping ratio; 4) the 

process is repeated until sufficiently small differences are obtained for the displacement (Sdd) and/or 

force (Sad) demand between two subsequent iterations. 
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Figure 1. Outline of the calculation procedure for the n-th contribution to the displacement pattern. 

 

The method outlined in Figure 1 is quite well established for the simplified design/analysis of 

nonlinear structures. The assumption of one mode of vibration dominating the response is usually 

made (Priestley et al., 2007) and the capacity curve (bold continuous line in Figure 1) is generally 

obtained by means of static nonlinear analysis of finite element models, under the action of pre-fixed 

lateral force patterns. One aspect that has been recently given more emphasis is how to consider the 

contribution of higher modes of vibration. Following the former proposal in Chopra and Goel (2002), 

a specific study for bridges was presented in Paraskeva and Kappos (2010). 

 

In order to calculate the effective stiffness, forces developing into the (generally) nonlinear isolation 

devices are required to be calculated for a given (trial) displacement. However, the total deck seismic 

force (Vd) is the sum of the intermediate reactions and abutment reactions. The latter are not directly 



linked to the displacements, which are assumed to be zero at the abutments. In order to calculate 

abutment reactions, consistently with the assumption of a sinusoidal displacement pattern, the 

following Equation can be derived from analysis of a Winkler beam: 

 

4

, , , ,4 4

4
1 1ab n n d n n eff n a nR x V M S

n
λ

π
  = = +    

 (1) 

 

where, with reference to the n-th vibration mode: ( )4
4

, 4n w nk EI Lλ = , kw,n = the Winkler stiffness 

per unit length, EI = flexural stiffness of deck, L = length of deck, Meff,n = effective (participating) 

modal mass, Sa,n = spectral (pseudo-)acceleration. 

Once end abutment and intermediate pier reactions have been calculated, the resultant of seismic deck 

forces is obtained and consequently the effective system stiffness can also be calculated for a given 

trial displacement demand (Fig. 1). 

 

In order to calculate the effective damping ratio, the ductility demand to any intermediate 

isolation/energy dissipation system is calculated for any given trial displacement demand. The 

effective damping ratio of isolation bearings located on a pier is calculated by means of the following 

Equation (2), which is written assuming a bilinear approximation to the device lateral force 

displacement response: 
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2 1 1 j j j

eff is is pl

j

ξ π K Vρ= + ∆∑  (2) 

 

where: j is the generic isolation bearing located on a pier; ( ) ( )1 1ρ µ µ= − + , µ  = pier-isolator 

subsystem ductility demand, 1

jV  = shear force producing inelastic behaviour of the j-th isolator, 

max 1

j

pl∆ = ∆ − ∆  = inelastic displacement demand ( 1

j∆  = pier-.isolator subsystem displacement 

corresponding to 1

jV ), 2,

j

isK  = stiffness corresponding to the second slope of the bilinear 

schematization. The reduction factor ρ is introduced to take into account that the Jacobsen’s rule, 

which is implemented into Equation (2), generally overestimates damping (Dwairi and Kowalsky, 

2004). The factor proposed is empirical and derived based on a limited number of analyses, some of 

which are reported in Della Corte et al. (2012). The effective damping ratio due to isolation bearings is 

added to the one from the supporting pier (by weighting the contributions based on the relative 

displacements). Finally the total system damping ratio is obtained by summing up contributions from 

the pier-isolator subsystems and the deck (by weighting the individual contributions with the work 

done by corresponding forces through maximum displacements) (Priestley et al. 2007). 

 

 

3. ANALYSIS OF LINEAR MODELS 

 

The approximations of the Winkler model have been investigated by comparing its predictions with 

results from numerical analysis of finite element models of continuous beams with discrete 

intermediate supports of equal stiffness. A comparison between the Winkler model and the real 

solution is presented in Makris et al. (2010) with reference to the first-mode period of vibration. This 

Section will present a similar comparison but with reference to multiple modes of vibration and 

abutment reactions. 

 

Abutment reactions are normalized by means of the reactions that would develop into a simply 

supported beam having the same length and flexural stiffness as the continuous deck model. The 

normalized abutment reactions are evaluated for many modes of vibration and they are plotted versus 

a normalized measure of the intermediate support stiffness. The latter can be identified starting with 

the analysis of the Winkler model. In such a model, because of the coincidence of mode shapes of the 



Winkler and simply supported beams, the relationship between the periods of vibration and the 

abutment reactions in the n-th mode is given by the following Equation (3), which includes the result 

presented in Equation (1): 
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The parameter λ  has been previously defined (Eq. 1), but now it is independent of the mode number n 

because the discussion is for the simpler case of uniform support stiffness. The parameter λ  is the 

normalized measure of the intermediate support stiffness in case of a Winkler beam. In case of a 

continuous beam of total length L with ns equal spans and (ns – 1) intermediate supports of equal 

stiffness k, the corresponding Winkler distributed stiffness may be defined as kw,s = (ns–1)k/L. The 

subscript s is explicitly introduced to note that for a given value of the real support stiffness the 

Winkler stiffness per unit length depends on the number of intermediate supports or equivalently on 

the number of spans ns. This correspondence between the Winkler model stiffness per unit length and 

the concentrated support stiffness is obviously arbitrary and conventional, but it is frequently used in 

the form presented above which is adopted to make hereafter a comparison of the two models. Using 

the definition of λ , the normalized measure of the single support stiffness can be defined as 

( )4 4 3

,2 1 8 8s s w sn k EI L kL EIκ λ= − = = . The coefficient 2 at the denominator is introduced to 

make the parameter identical to the one presented in Makris et al. (2010) thus favouring any possible 

comparison with previous results. It is obviously a scale factor which does not affect the results. 

 

Mode shapes of a continuous beam with a (ns–1) intermediate supports will be different from the 

sinusoidal mode shapes of the simply supported beam. Therefore, for any given number of spans ns, 

the normalized abutment reactions will generally be expressed by the general form of Equation (4): 
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where fn(κ) (or gn(κ)) is an unknown function of the normalized support stiffness κ. It is noted that the 

dependence from ns has not been formally represented in Equation (4) in order to simplify the 

notation. While the first two factors in Equation (4) (fn(κ), , ,

SS

eff n eff nM M ) depend only on the 

displacement shape, the latter factor includes the effect of the shape of response spectrum. In the 

following, for any given number of spans ns, the three factors fn(κ), , ,

SS

eff n eff nM M  and ( ) ( )SS

a n a nS T S T  

are plotted first separately and eventually they are combined according to Equation (4). The first two 

factors have been obtained using numerical models analyzed with OpenSEES (McKenna et al. 2004). 

To generate the normalized spectrum, one of the Italian seismic code spectra is used, corresponding to 

the site conditions of the sample bridge analysed by means of response history analysis in Della Corte 

et al. (2012). The normalized spectral accelerations are obtained starting with T1
SS

 = 1; further 

discussion about this aspect is presented later on. In addition, also the normalized periods of vibration, 

Tn/Tn
SS

, are plotted in the following in order to generalize and facilitate the comparison of the response 

spectrum effect. For any given ns, odd modes till the (ns+1)-th are considered in the analysis. This 

number of modes generally corresponds to a sufficiently large value of the sum of the effective modal 

mass ratios. Comparisons with the Winkler model are also shown in the following Figures, where 

dashed lines are used to identify relevant results.  

 

Figure 2 shows the results for the case ns = 2. Figure 2a illustrates the function fn(κ), with n = 1 and n 

= 3, i.e. for the first and third vibration modes. From the numerical results shown in Figure 2, it can be 

argued that the response is characterized by a limit value of κ (= 200 based on the results in the 

Figure), corresponding to a minimum and a maximum of fn and , ,

SS

eff n eff nM M , respectively. This value 



of κ marks the transition from a mode shape exhibiting an appreciable displacement at the 

intermediate support (small values of κ) to a mode shape with a very small displacement at the 

intermediate support (large values of κ). Variations of the normalized period of vibration versus the 

normalized stiffness are shown in Figure 2c, where the Winkler solution is also presented. The 

Winkler model overestimates the first period of vibration till κ = 300, while underestimation occurs at 

larger values of κ. The third period of vibration is always overestimated by the Winkler model in the 

range of values of κ considered in this study. The normalized spectral accelerations, corresponding to 

the normalized periods of vibration at any fixed value of κ, are illustrated in Figure 2d. The results are 

consistent with those of Figure 2c. In fact, first mode spectral accelerations are underestimated for 

relatively small values of κ, because of the corresponding overestimation of the period of vibration. At 

relatively large values of κ, though underestimating the first mode period of vibration, there is no 

overestimation of spectral accelerations because the horizontal plateau of the assumed response 

spectrum is reached. Third mode spectral accelerations are coincident for the three models for values κ 

< 200 because they correspond to the horizontal plateau of the response spectrum. For larger values of 

κ, there is a reduction of spectral accelerations corresponding to the initial linear branch of the design 

spectrum, with the lower limit of PGA reached for very small periods of vibration. Differences 

between the Winkler model and the discrete support system are again explained because of the 

differences in the periods of vibrations illustrated in Figure 2c. 
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Figure 2. Individual contributions to the normalized abutment reactions; ns = 2: (a) fn(κ); (b) Meff,n/Meff,n
SS

; (c) 

Tn/Tn
SS

; (d) Sa,n/Sa,n
SS

. 

 

Plots similar to those of Figure 2 are reported in Figure 3 for ns = 4. Figures 3a and 3b show that the 

behaviour exhibited by the third mode in the case ns = 2 is shifted to the fifth mode in the case ns = 4. 

The limit value of κ is appreciably increased up to values larger than 1000. It is noted also that the first 

mode exhibit now a shape that is close to the sinusoidal shape over a range of values of κ wider than 

in the case ns = 2. This can be deduced from the fact that the effective mass of the continuous beam is 

close to the effective mass of the simply supported beam up to κ = 1000. The corresponding 

improvement of the Winkler approximation in predicting periods of vibration and corresponding 

spectral accelerations is clearly visible in Figures 3c and 3d. However, Figure 3b shows that large 

differences still persist between effective mass ratios for higher modes of vibration. 
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Figure 3. Individual contributions to the normalized abutment reactions; ns = 4: (a) fn(κ); (b) Meff,n/Meff,n
SS

; (c) 

Tn/Tn
SS

; (d) Sa,n/Sa,n
SS

. 

 

Figure 4 is relevant to the case ns = 8. The comments made with reference to the case ns = 4 can be 

applied to also the case ns = 8, which confirms the (expected) trend of an improving approximation of 

the Winkler model when the number of spans is increased. It can be seen from Figure 4c that the 

effective modal mass ratio is equal to 1 over a wider range of values of κ and a larger number of 

modes, as respect to the previous cases, what indicates that the displacement shape can be better 

approximated by a sinusoidal assumption. It is noted that the behaviour exhibited by the third and fifth 

mode in the cases ns = 4 and ns = 8 is now shifted to the ninth mode. 

 

The product of the function fn and the effective modal mass ratio, which has been labelled gn, as well 

as the product of the three factors highlighted in Equation (4), is shown in Figure 5 for all values of ns. 

It is noted that the first factor on the right hand side of Equation (3) is to be directly compared with the 

more general function gn, considering that the ratio of the effective masses between the Winkler model 

and the simply supported beam is equal to unity. Therefore, comparing the numerical solution of the 

discrete support system with the corresponding Winkler model in terms of the gn function allows one 

to capture the effect of the varying shape of the mode of vibration for varying the support stiffness. 

Such a comparison is presented in the first column of Figure 5, i.e. in Figures 5a, 5c and 5e for ns = 2, 

4 and 8 respectively. Large differences can exist between the two models for small values of ns and/or 

large values of κ. For sufficiently small values of κ (e.g. smaller than 10), the Winkler model is 

sufficiently approximate whichever the number of spans is. The differences are also acceptable for ns 

> 8, whichever is the value of κ but smaller than 100. To establish limit values of κ making acceptable 

the approximations of the Winkler model requires considering also the errors in the evaluation of 

periods of vibration, which reflect into different values of spectral accelerations. The effect of the 

response spectrum can be seen in the second column of Figure 5, i.e. Figures 5b, 5d and 5f for ns = 2, 4 

and 8 respectively, where the products of gn and Sa/Sa
SS

 are plotted. Previous comments are generally 

confirmed, because the differences exhibited in terms of spectral accelerations can be considered a 

minor effect as shown by results in Figures 2d, 3d and 4d. The SRSS combination of individual mode 

contributions shown in Figures 5b, 5d and 5f highlight that the effect of higher modes tend to increase 

with an increase of the number of spans and the relative support-to-deck stiffness. It has to be noted 

that the final value of abutment reactions is the product of the ratios shown in Figure 5 and the 



corresponding reactions of the simply supported beam. The more flexible is the deck, the larger is the 

effect of higher modes on abutment reactions of the simply supported beam. Therefore, the effect of 

higher modes on long continuous beams (i.e. large ns) is strongly increased because of both the effect 

on the ratios indicated in Figure 5 and the effect on the reactions of the corresponding simply 

supported beam. 
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Figure 4. Individual contributions to the normalized abutment reactions; ns = 8: (a) fn(κ); (b) Meff,n/Meff,n
SS

; (c) 

Tn/Tn
SS

; (d) Sa,n/Sa,n
SS

. 
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Figure 5. Normalized abutment reactions: ns = 2 (a) and (b); ns = 4 (c) and (d); ns = 8 (e) and (f). (continued) 
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Figure 5. Normalized abutment reactions: ns = 2 (a) and (b); ns = 4 (c) and (d); ns = 8 (e) and (f). 

 

Some of the results shown in Figures 3, 4 and 5 depend on the selected normalized acceleration 

response spectrum Sa(Tn)/Sa(Tn
SS

). The normalized spectrum was generated assuming T1
SS

 = 1 s and 

using the corresponding ratios obtained from one selected design spectrum which is currently 

implemented in the Italian seismic code. Changing this normalized spectrum will obviously change the 

results that directly depend on it (e.g. the SRSS combination). To generate additional case studies, the 

first mode period of vibration of the simply supported beam has been subsequently set equal to T1
SS

 = 

2 s and T1
SS

 = 4 s. Results similar to the ones already shown for T1
SS

 = 1 s have been obtained. 

 

The effect of the starting value of the first-mode period of vibration of the simply supported beam is 

illustrated in Figure 6, where a direct comparison between the real beam with discrete support system 

and the Winkler model is also presented. The horizontal axis of plots in Figure 6 represents values of 

the parameter κs = (ns–1)κ, which allows to compare the response of two beams with the same total 

support stiffness. 

 

Figure 6a illustrates the ratio of first-mode periods of vibration for the two models. Obviously such a 

ratio does not depend on the assumed T1
SS

. Figure 6a clearly highlights that for ns = 8 the Winkler 

model gives a sufficiently accurate prediction of the first mode of vibration. This is true for also higher 

modes (not shown in the plots of Figure 6a), as it can be deduced from Figures 2c, 3c and 4c.  

 

The ratio of abutment reactions of the two models is shown in Figure 6b, in terms of SRSS 

combination of individual modal responses. It can be seen that the abutment reactions changes with 

the assumed T1
SS

 when ns = 2 but the response becomes insensitive to T1
SS

 when ns = 8. Intermediate 

results are obviously obtained for ns = 4. Such behaviour can be explained with the help of the 

following Equation (5) and the results discussed previously.  
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In Equation (5) , ,

W SS

eff n eff nM M=  and W W

n nf g≡ . The first factor on the right-hand side of Equation (5), 

i.e. the ratio W

n ng g  is only a function of κ, while the second factor, i.e. the ratio ( ) ( )W

a n a nS T S T , 

depends also on the assumed T1
SS

. In fact, even if the ratio of periods W

n nT T  does not depend on T1
SS

 

(Fig. 6a), the ratio of the spectral acceleration depends on it, because the spectrum is generally a 

nonlinear function of the period of vibration. But, for ns = 8 the approximation Tn = Tn
W

 holds true 

(Fig. 6a), thus leading to Sa ≈ Sa
W

 and making the ratio of abutment reactions independent on the 

selected T1
SS

. The ratio of abutment reactions can still be different from unity because of the ratio 
W

n ng g  being different from unity for higher modes of vibration at large values of κ, as shown in 

Figure 5e. Therefore, though the approximation of the Winkler model improves with increasing the 

number of spans, underestimation of abutment reactions may still occur for large values of κ.  
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Figure 6. Winkler vs. discrete support system: (a) first period of vibration; (b) abutment reactions. 

 

 

4. ANALYSIS OF NONLINEAR MODELS 

 

Section 2 has discussed the method to substitute the generally nonlinear structural response with 

“equivalent” or “effective” linear models. The linear model is “effective” if it allows predicting peak 

displacement and force demand with sufficient accuracy, at least for design purposes. With reference 

to the special case of continuous bridges with intermediate supports and abutment restraints, it has 

been shown that abutment reactions are needed to be evaluated. As a first approximation, the Winkler 

model was suggested to be used to estimate such reactions. However, Section 3 has shown that in case 

of linear structural response the Winkler model may underestimate the real abutment reactions. 

Underestimation can be large for a small number of spans (2 – 4 spans) and/or a large value of the 

intermediate support stiffness. However, for relatively large values of ns and/or small values of the 

normalized stiffness κ the Winkler model may give sufficiently approximate results. Combining the 

approximations linked to the linearization process and the use of the Winkler model generates a final 

result that should be assessed by comparing the approximate model results with more rigorous 

nonlinear finite element model analysis.  

 

Two sample comparisons of this type are presented in Figure 7, with reference to two 13-span bridges 

with friction pendulum isolation devices on the top of the 12 intermediate piers. The bridge samples 

are generated from the case study presented in Della Corte et al. (2012), by changing the pier stiffness 

which is assumed equal to either the maximum (Fig. 7a) or the minimum (Fig. 7b) from the initial 

sample bridge. The two bridges, with large and small values of pier stiffness, were analyzed using a 

set of 7 ground motions (response history analysis, RHA), by varying the coefficient of friction. The 

same cases were also analyzed using the simplified procedure outlined at Section 2, using the average 

spectrum of the 7 records and the CQC modal combination rule (effective response spectrum analysis, 

ERSA). Peak values of abutment reactions from both RHA (individual points in Figures) and ERSA 

(continuous lines in Figures) are shown. Figure 7a (large pier stiffness) shows that peak values of 

abutment reactions from ERSA tend to be smaller than peak values from RHA, if large coefficients of 

friction are considered. Figure 7b (small pier stiffness) shows instead a good prediction by ERSA for 

any value of the coefficient of friction. For large values of the coefficient of friction, there is no sliding 

in the FPS and the bridge behaves as fixed (elastic in the analysis). At such large values of the 

coefficient of friction, elastic model results similar to those discussed at Section 3 can be used but with 

reference to the average spectrum of the 7 ground motions and ns = 13. It was found that the Winkler 

model shall underestimate of about 3% the abutment reactions, at a value of the normalized total pier 

stiffness of about 2000, which characterizes the bridge with large pier stiffness and large coefficient of 

friction. From Figure 7a it can be seen that the ERSA method underestimate of about 19% the 

abutment reactions, which is a significantly larger error. However, it has to be considered that only 7 

acceleration records were used for the analysis, whose mean spectrum is characterized by same jagged 

shape. It is known that using a jagged response spectrum will originate larger errors of the modal 

combination rules (CQC) as respect to the peaks from RHA results. This is the case of Figure 7a while 

it is not the case of Figure 7b, because the smaller pier stiffness locates the corresponding bridge into a 



region of much more smooth spectral response. Therefore, the 19% underestimation occurring in case 

of large pier stiffness and large coefficient of friction (Fig. 7a) is attributed to the use of the Winkler 

model for only 3%, while the remaining 16% of difference is attributed to the use of the statistical 

combination rule in a case of only 7 ground motions. 

 

(a)  (b)  
 

Figure 7. Winkler vs. discrete support system: (a) large pier stiffness; (b) small pier stiffness. 

 

 

5. CONCLUSIONS  

 

Higher modes of vibration have a significant effect on abutment reactions of continuous bridges. The 

effect generally increases with increasing number of spans and stiffness of intermediate supports. 

Using an effective response spectrum analysis (ERSA) method along with an approximate estimate of 

abutment reactions by means of the Winkler model revealed to work properly in case of bridges with a 

sufficiently small stiffness of intermediate supports (isolated bridges). However, there will always be 

an upper bound to the intermediate support stiffness beyond which the error linked to the Winkler 

model will start to increase significantly and to become unacceptably large.  
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