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SUMMARY: 
This article deals with the free vibration analysis and determination of the seismic parameters of a sloping-frame. 
The members of the frame are assumed to be governed by the transverse vibration theory of Euler-Bernoulli 
beam. To solve this classical problem, a closed-form solution is firstly proposed and then, a numerical analysis is 
performed for some verification purposes. The closed-form solution is developed by solving the frame equations 
of motion, directly. For this reason, some mathematical techniques are utilized, such as Fourier transform and the 
well-known complementary solutions. In this way, some differential equations must be solved, and several 
boundary conditions should be satisfied. Moreover, these results are obtained by the use of the finite element 
method. In this comparison process, some differences are observed between the closed-form and numerical 
results. This fact motivated us to propose some modifications in the characteristic matrices of the finite element 
model of the frame. 
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1. INTRODUCTION 

The free vibration analysis of beams and frames is an important problem in the structural engineering. 
In view of that, many researchers have devoted themselves to the study of this field, with more 
concentration on the beams [Kim 2001, Albarracin et al. 2004, Li 2001, Li 2000, Firouz-Abadi et al. 
2007, Failla and Santini 2008] in contrast with the frames [Albarracin and Grossi, 2005]. Moreover, 
the study of the closed-form solution of vibrating frame structures along with the numerical solution 
and the comparison of these two approaches, in order to examine the accuracy and the precision of the 
numerical ones, such as Finite Element Method (FEM), Boundary Element Methods (BEM), etc., is 
hardly considered in the literature. Also, in contrast to the body of available information, the new 
sufficient data was not found for sloping-frames with variable slopes. 

This article deals with the free vibration analysis and determination of the seismic parameters of a 
sloping-frame which consists of three members; a horizontal, a vertical, and an inclined member. The 
both ends of the frame are clamped, and the members are rigidly connected at joint points. The 
individual members of the frame are assumed to be governed by the transverse vibration theory of an 
Euler-Bernoulli beam. To solve this classical problem, a closed-form solution is firstly proposed and 
then, a numerical analysis is performed for some verification purposes. The closed-form solution is 
developed by solving the frame equations of motion, directly. For this reason, some mathematical 
techniques are utilized, such as Fourier transform and the well-known complementary solutions. In 
this way, some differential equations must be solved, and several boundary conditions should be 
satisfied. Herein, the more accurate derivation of the last boundary condition is the most important 
challenge of this work. This boundary condition is expressed as three distinctive versions, and the free 
vibration parameters of the frame are attained for these three versions. The additional descriptions 
could be found elsewhere in detail [Nezamolmolki and Aftabi Sani, 2012]. Moreover, the results are 
obtained by the use of the FEM. In this comparison process, some differences are observed between 
the closed-form and the numerical results. This fact motivated us to propose some modifications in the 
characteristic matrices of the finite element model of the frame, with focus on the mass matrix in this 
article. Finally, the natural frequencies are presented for a wide range of angles of the sloping member. 



 

2. DEFINITION OF THE PROBLEM 

Now consider a sloping-frame as shown in Fig. 2.1. The members at joint points are rigidly connected. 
The behavior of the individual members of the frame is assumed to be governed by the Euler-
Bernoulli theory and the axial deformations effects are neglected. The geometrical and mechanical 
properties and the length of three uniform members are the same. The flexural rigidity of the member 
is denoted by EI. Also, ρ  is the mass density and A is the cross-sectional area of the bending member. 



x
y







L

L

L





x

x

u

 

Figure 2.1. The semi-inclined frame under study 

The angle among the inclined member and the horizontal direction is shown by θ  which is assumed 
between 0° and 90°. Furthermore, the displacement functions for the vertical, horizontal and inclined 
members are y , z  and u , respectively. 

2.1. Differential Equation 

Consider a uniform Euler- Bernoulli beam as an individual member of the frame shown in Fig. 1. The 
equation of motion for free flexural vibrations of a uniform elastic beam ignoring shear deformation 
and rotary inertia effects is: 
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where ),( txy  is the lateral displacement at distance x  along the length of the beam and time t , EI the 

flexural rigidity of the beam, ρ  the mass density and A the cross-sectional area of the beam. 

As it is clear, Eqn. 2.1 is expressed in the time domain which the Fourier transform can easily convert 
it into the frequency domain. Therefore: 
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where ),( xY  is the Fourier transform of ),( txy  and   the frequency. Obviously, Eqn. 2.2 is a 

homogenous ordinary differential equation with the following complementary solution: 

xcxcxcxcxY  coshsinhcossin),( 4321   (2.3) 

Let us return to the frame shown in Fig. 1. Due to the fact that three members of the frame has the 
sameρA , EI and , then the general form of the above-mentioned solution is similar for all members. 

However, the coefficients are different and consequently, each element has an individual displacement 



 

function: ),( xY  for vertical member, ),( xZ  for the horizontal and ),( xU  for inclined one 

xcxcxcxcxY  coshsinhcossin),( 4321   (2.4) 

xcxcxcxcxZ  coshsinhcossin),( 8765   (2.5) 

xcxcxcxcxU  coshsinhcossin),( 1211109   (2.6) 

After this, capital letters ZY , and U are replaced by y , z  and u  for simplicity in notation. 

2.2. Boundary Conditions (B.C.s) 

As it is clear from Eqn. 2.4-2.6, the entire system has 12 unknown constants, which can be solved 
through the satisfaction of 12 boundary conditions. These boundary conditions are thoroughly 
illustrated elsewhere in detail. Herein, only the continuity conditions of displacements between each 
pair of the three bars meeting at the joints are presented for instance. 

θsin)L()L( uy   (2.7) 

0)0( z  (2.8) 

θtan)L()L( zy   (2.9) 

 

Figure 2.2. Bending deformation diagram based on neglecting of the axial deformation 

The other boundary conditions, such as the natural boundary conditions of the fixed ends, the 
continuity conditions for slopes, moments at the joints, and the equation of equilibrium of forces and 
moments which could be governed and expressed in three versions, are omitted for brevity. 

2.3. Determination of the closed-form solution 

Substituting Eqn. 2.4-2.6 in boundary conditions, one obtains a set of 12 homogeneous equations in 
the constants 12...,,2,1, ici

. Since the system is homogeneous for existence of a non-trivial solution 

the determinant of coefficients must be equal to zero. This procedure yields the frequency equation: 

0)θ,,L( S  (3.1) 

It should be mentioned, the set of 12 homogeneous equations could be easily converted to the set of 7 
homogeneous equations. The linear systems corresponded to each version of 12th boundary condition 
are only different in the last row. 



 

3. FINITE ELEMENT METHOD OF NUMERICAL SOLUTION 

In the finite element method, we divide the given frame (beam and columns) into several elements and 
assume a suitable solution within each of the elements. From this we formulate the necessary 
equations from which the approximate solution can be obtained easily.  
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Figure 3.1. The bending element 

the stiffness matrix )(eK  and mass matrix )(eM  as [Rao, 2004]: 
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Obviously, to obtain the more accurate results, the frame should be divided into smaller elements. 
Herein, each member is subdivided into NE elements of equal length. Therefore, the frame contains 

NE3  elements as shown in Fig. 3.2. 

Once the stiffness and mass matrices of the complete frame are available, we formulate the eigenvalue 
problem as 

DMDK λ  (3.3) 

where D  is the eigenvector, and λ  is the eigenvalue. The solution of Eqn. 3.3 gives us the natural 

frequencies ( 2λ  ) and the corresponding mode shapes of the frame. 
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Figure 3.2. Each member divided into NE element 



 

4. RESULTS 

As explained in the previous section, the finite element method was utilized as a numerical analysis 
approach in the present study such as many other studies which are carried out recently in this field. 
Therefore, a special purpose computer program was developed based on the theory explained in the 
previous section. The program is utilizing the both original and modified mass matrices. The sloping-
frame members are discretized by bending element introduced in Fig.3.1. There are several options 
available in this analysis tool to add several type of added mass. Also, a simple code was produced for 
the closed-form solution to obtain the natural frequencies and mode shapes of the frame. Utilizing the 
above-mentioned programs, the free vibration responses of sloping-frame are obtained for several 
values of θ , as a discrete spectrum ( o90 10,..., 0,θ  ). The first value represents L-shape frame, 

while o90θ   represents the well-known portal frame. It should be mentioned that response quantities 

which will be presented in this section are the values of dimensionless eigen frequency λ . These 
values are obtained at the first ten modes for various amounts of angle θ . The results are presented in 

Tables 4.1-4.2 for several models and o90 10,..., 0,θ  . As it is clear from the tables, these values are 

the same for the modified finite element method with added mass and the first version of closed-form 
solution. 

Table 4.1. Frequency Parameters obtained by Finite Element Analysis without Added Mass 

 Mode Number 

 1 2 3 4 5 6 7 8 9 10 

θ  (degree)          

0 2.1878 3.6245 4.3818 5.3538 6.7702 7.5121 8.4941 9.9118 10.6544 11.6361 

10 2.2315 3.6309 4.4176 5.3105 6.7592 7.4845 8.5343 9.9183 10.6898 11.5926 

20 2.2720 3.6315 4.4609 5.2656 6.7454 7.4642 8.5694 9.9192 10.7327 11.5478 

30 2.3064 3.6262 4.5106 5.2214 6.7310 7.4500 8.5976 9.9144 10.7819 11.5038 

40 2.3323 3.6156 4.5641 5.1803 6.7183 7.4406 8.6172 9.9046 10.8348 11.4633 

50 2.3474 3.6014 4.6175 5.1452 6.7098 7.4348 8.6264 9.8912 10.8873 11.4293 

60 2.3491 3.5856 4.6656 5.1198 6.7079 7.4317 8.6233 9.8764 10.9342 11.4055 

70 2.3352 3.5710 4.7024 5.1075 6.7152 7.4302 8.6063 9.8627 10.9697 11.3950 

80 2.3035 3.5604 4.7238 5.1095 6.7343 7.4297 8.5738 9.8528 10.9900 11.3984 

90 2.2525 3.5564 4.7300 5.1216 6.7677 7.4296 8.5254 9.8490 10.9960 11.4114 

 
Table 4.2. Frequency Parameters obtained by Finite Element Analysis with Added Mass 
(which is exactly similar to the First Version of the Closed-form Solution) 

 Mode Number 

 1 2 3 4 5 6 7 8 9 10 

θ  (degree)          

0 2.1878 3.6245 4.3818 5.3538 6.7702 7.5121 8.4941 9.9118 10.6544 11.6361 

10 2.2127 3.6286 4.4151 5.2774 6.7563 7.4827 8.4811 9.9128 10.6843 11.5229 

20 2.2014 3.6231 4.4487 5.1539 6.7382 7.4601 8.3927 9.9016 10.7068 11.3396 

30 2.1628 3.6112 4.4794 5.0240 6.7231 7.4455 8.2888 9.8869 10.7188 11.1879 

40 2.1077 3.5969 4.5050 4.9150 6.7133 7.4371 8.2009 9.8740 10.7213 11.0936 

50 2.0447 3.5833 4.5243 4.8347 6.7086 7.4327 8.1339 9.8643 10.7175 11.0420 

60 1.9793 3.5720 4.5369 4.7811 6.7077 7.4307 8.0837 9.8573 10.7112 11.0155 

70 1.9145 3.5635 4.5429 4.7493 6.7100 7.4299 8.0455 9.8527 10.7050 11.0027 

80 1.8513 3.5583 4.5437 4.7341 6.7152 7.4296 8.0157 9.8499 10.7002 10.9973 

90 1.7901 3.5564 4.5419 4.7300 6.7233 7.4296 7.9919 9.8490 10.6975 10.9960 

 



 

For the first and second modes, the amount of eigenvalues λ  is plotted versus the values of angle θ  for 

a significant range as shown in Fig. 4.1-4.2. Furthermore, some comparisons are illustrated in each 
figure for the analytical and numerical approaches. This would help to capture a feeling of the 
accuracy obtained in the closed-form solution versus the finite element technique. However, prior to 
this presentation, it is worthwhile to have a glance at the comparison for natural frequencies. It is 
observed that the response of the first version of the closed-form solution in each mode matches very 
well with the modified finite element response, such that it is hardly distinguishable from the 
corresponding exact curve. It should be mentioned that the comprehensive explanations about these 
three versions of the closed-form solution could be found elsewhere in detail [Nezamolmolki and 
Aftabi Sani, 2012]. 

 

Figure 4.1. The first mode 
 

 

Figure 4.2. The second mode 



 

Also, Fig. 4.3-4.4 illustrates the effect of the number of bending elements (which is denoted by 
abbreviation NE) on the accuracy of the modified finite element response. This investigation is carried 
out for the first 10 modes and o60 30,θ   by using several NE. 

 

Figure 4.3. Effect of the number of elements (NE) on the accuracy of 
the modified finite element response o30θ   

 
 

 

Figure 4.4. Effect of the number of elements (NE) on the accuracy of 
the modified finite element response o60θ   

As the last result, some mode shapes are illustrated for some values of o60 30,θ   which are shown in 

Fig. 4.5-4.6. 



 

  

  

 

Figure 4.5. The first 5 modes of the sloping-frame with o30θ   
 

   

   

 

Figure 4.6. The first 5 modes of the sloping-frame with o60θ   



 

8. CONCLUSION 

The free vibration analysis of a sloping-frame was studied and the seismic parameters of the system 
were determined. For this reason, a closed-form solution was developed which was based on the 
satisfaction of the both differential equations and boundary conditions, simultaneously. Also, the finite 
element method was utilized and the results were obtained to compare with the closed-form solutions. 
The natural frequencies and mode shapes were presented for different values of the angle θ  in inclined 
member. Overall, the main conclusions obtained by the present study can be listed as follows: 

* It is observed that natural frequencies of the original finite element method are generally smaller 
than the natural frequencies obtained by the analytical approach. However, it is noted that results 
corresponding to the modified finite element model with change in the mass matrix are getting closer 
to and coincided with the closed-form solution. Moreover, the comparison between the analytical and 
numerical techniques in related with the variation of the angle θ  in inclined member for several modes 
are thoroughly discussed, as follow: 

* In the first mode, the difference between the natural frequency of the original finite element method 
and the results of the analytical approach increases gradually as the angle θ  grows. The similar trend is 
observed for the mode number three and four. On the contrary, the mentioned difference increases for 
the median values of the angle θ  in the second mode.  

* In general, the parameter θ  has a significant effect on the frequency parameters of the sloping-
frame. This fact could be clearly proved by the comprehensive sensitivity analysis that was carried out 
in the result section. Also, this is true for all three versions of the analytical solution considered. 

* Almost in all modes, a single special value of θ  could be introduced as an optimum value which 
lead to the maximum/minimum amount of the natural frequency. For example, in the first mode, this 
optimum value is about ten degrees (lead to max.) and in the fifth mode, it is about sixty degrees (lead 
to min.). 

* As it is obvious from the presented results for all investigated modes, the finite element solutions 
converges into the first version of closed-form solution, of course by imposing the proposed 
modification on the mass matrix. It should be mentioned that the best modification which coincided 
appropriately with the closed-form results was to add the single translational mass which excited only 
by the horizontal acceleration of the beam. Moreover, the amount of the mentioned mass should be 
equal to the beam mass. 

* Although, the analytical approach is not in general as simple and programmable as the numerical 
techniques, it is a reliable approach and more accurate. Furthermore, it is much easier than the 
experimental efforts.  

* It is worthwhile to mention that the accuracy of the finite element results decrease with the increase 
in the mode number. Whereas, the closed-form solution is frequency-independent, and its accuracy is 
appropriate for both high and low frequencies. This fact could be considered as a valuable object 
especially for the analysis in near-fault earthquakes which are approximately observed with the high 
dominant frequencies. In fact, this type of earthquakes excite the high modes of the structure and 
hence, these modes should be evaluated more accurate which is almost impossible in finite element 
method. 
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