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SUMMARY:
This paper presents a new radial basis function (RBF) for the boundary element method in the analysis of plane
transient elastodynamic problems. The dual reciprocity method (DRM) is reconsidered by using the Inverse
Multiquadric (IMQ) function as a new generation of RBFs to approximate the inertia term. The particular
solution kernels of the proposed RBF corresponding to displacement and traction, with no singular terms, have
been explicitly derived. Furthermore, the limiting values of the particular solution kernels have been evaluated.
To illustrate the validity and accuracy of the present RBFs, some numerical examples are examined and
compared to the results of analytical and other RBFs reported in the literature. In comparison with other RBFs,
IMQ RBFs represent more accurate results, using a smaller degree of freedom, and hence they are more
efficient.
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1. INTRODUCTION

Boundary elements have been developed as a versatile and powerful alternative to finite elements
especially in situations where higher accuracy is required for problems such as stress concentration or
infinite domains (Brebbia et al., 1984). Early elastodynamics formulations of BEM may be assigned to
the researches of Friedman and Shaw (1962), Banaugh and Goldsmith (1963), and Cruse and Rizzo
(1968). Three main elastodynamics formulations of BEM have been studied in the literature: the time
domain, the Laplace transform, and the domain integral techniques. The first two methods suffer from
the mathematical complications involved in their formulations, and the third one needs domain
integrations (see for example: Dominguez, 1993; Mansur, 1983; Karabalis and Beskos, 1984, and
Antes, 1985). In order to resolve these problems, Brebbia and Nardini in their applications, Nardini
and Brebbia (1983), Brebbia and Nardini (1983), and Nardini and Brebbia (1985) developed the well-
known dual reciprocity method (DRM). In this method, the integral equation of the domain is
expressed in terms of boundary integrals as well a domain integral related to the domain inertia terms.
By means of a new collocation method to approximate the inertia terms (or, domain accelerations),
they transformed the domain integral to the boundary integral to eliminate the domain terms from
formulations. In this collocation method, various classes of approximation functions, which are called
the radial basis functions (RBFs), may be used (Golberg and Chen, 1994). As the RBFs directly
influence the accuracy of the results of the DRM, the choice of suitable RBFs play a significant role in
the solution. From a general point of view, it seems that the RBFs may be categorized into two main
classes, namely globally and locally based RBFs. Among various RBFs, the commonly used conical
functions (Nardini and Brebbia, 1983; Brebbia and Nardini, 1983; Nardini and Brebbia, 1985, and
Golberg and Chen,  1994),  the  thin  plate  splines  (Golberg and Chen, 1994; Agnantiaris et al., 1996;
Bridges and Wrobel, 1994; Golberg, 1995; Chen, 1995; Karur and Ramachandran, 1995, and
Mehraeen and Noorzad, 2001), the Gaussian functions (Agnantiaris et al., 1996, and Rashed, 2002a),
multiquadrics (Golberg and Chen, 1994; Agnantiaris et al., 2001; Samaan and Rashed, 2007, and
Samaan and Rashed, 2009), Sinusoidal (Rashed, 2008), Fourier (Hamzeh Javaran et al., 2011a), and J-
Bessel (Hamzeh Javaran et al., 2011b, and Fornberg et al, 2006) belong to the globally based class,
while compact supported RBFs (Wendland, 1995; Chen et al., 1999; Golberg et al., 2000; Rashed,



2002b, and Samaan et al., 2007) are locally based ones.  The authors  (Hamzeh Javaran et  al.,  2011a,
and Hamzeh Javaran et al., 2011b) proposed two types of oscillatory RBF, Fourier and J-Bessel, for
the analysis of 2D transient elastodynamic problems.

In this study, the application of DRM in solving 2D transient elastodynamic problems has been
extended by employing a set of globally RBFs, called Inverse Multiquadric RBFs in the literature
(Fornberg et al., 2006). The particular solution kernels of IMQ RBFs corresponding to displacement
and traction are derived. These solutions are presented in closed-form expressions that involve no
singular terms. When the field point coincides to the source point, the limiting case emerges. Two
numerical examples have been tested. To demonstrate the accuracy and validity of the proposed
method, the results have been compared to the results obtained from analytical solution and other
RBFs reported in the literature.

2. DUAL RECIPROCITY METHOD (DRM) FORMULATION

A reciprocal relation can be obtained between an elastodynamic state and an elastostatic one. For any
general point x of a two-dimensional (2D) body  with boundary , the equilibrium equation for an
elastodynamic state, in the absence of body forces, is given in the following form (Dominguez, 1993)
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where tensor notation ( 2,1k ) is used: )(xkk uu represents the displacement field, and are the
Lame's constants, is the mass density, the over dots indicate differentiation with respect to time, and
comma is derivative with respect to spatial coordinates of the domain point. The solution of Eqn. 2.1
may be assumed as p

k
c
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ku denotes the complementary/homogeneous solution, and
p
ku  represents the particular one.

Assuming a continuous weight function (or, so-called fundamental solution) defined over , writing a
weighted residual form of Eqn. 2.1, and using Green's identity, the following equation is obtained
(Brebbia et al., 1984)
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where lklkc )(  if , 0)(lkc  if , and lklkc 2
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smooth at . In addition, for the source point and the field point x, ),(** xlklk uu  and

),(** xlklk pp  represent the two-point displacements and tractions fundamental solutions (Brebbia et
al., 1984), respectively. Moreover, kp indicates the surface stress (or, traction).

Since the last term of Eqn. 2.2 is a domain integral, it is not possible to develop a boundary integral
equation formulation unless the domain integral is taken to the boundary. This acceleration domain
term may be transformed to the boundary by means of the dual reciprocity method (DRM) as the
following relation (for more details, see Dominguez, 1993):
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where p
ku  and p

kp  concerns to the particular solution for an infinite domain with no boundary
conditions. These particular solutions may be analytically achieved from Eqn. 2.1,

0)( ,, k
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jjk uuu , if the inertia term ku  is a known function. In practice, this
expression is an unknown function for which, an approximate alternative consisting of radial basis
functions is proposed in the next section.

3. PROPOSED RADIAL BASIS FUNCTIONS

In order to find the mentioned particular solutions, the inertia term )(xkk uu  over the domain

is approximated employing a set of unknown coefficients )( m
k

m
k y  and a class of RBFs denoted

by ),( mm ff yx , where Mm ,...,2,1  indicates the number of class member, and x  and
my denote the new source and field points, respectively (Dominguez, 1993). Therefore, we can write
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The main question may arise here: which type of functions are the most appropriate one to be used as
RBFs? In this paper, one is selected to be a class of global RBFs namely inverse multiquadric (IMQ).
Altogether IMQ RBF is defined as the following form
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The general set of IMQ RBFs can be represented by the following equation
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where mmr yx  is the distance between x  and my points.

The displacement and traction fields of this particular solution may be respectively introduced via new
fictitious displacement and traction kernels as the following form (Brebbia and Nardini, 1983)
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where ),( m
jl

m
jl yx  and ),( m

jl
m
jl yx  are appropriate fictitious kernel functions, which will

be introduced in the following paragraph. Furthermore, 2,1l  indicates the direction of the
corresponding load.

Substituting from Eqns. 3.1 and 3.4 into Eqn. 2.1 and using the Galerkin vector decomposition
method, the following expressions may be derived after some algebraic manipulations (for more
details, see Hamzeh Javaran et al, 2011a):
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where kl  indicates the Kronecker delta symbol, G presents the Galerkin method parameter,

R )( mr is chosen for simplicity, ln indicates the components of the normal vector for which

lln nRR ,, . In addition, GG , and G are the derivatives of G with respect to R that will be derived
in section 4.

4. PARTICULAR SOLUTION OF BI-HARMONIC EQUATION

Since we assume that fictitious body is an infinite domain, each point of this domain may be supposed
to be the center of a circle of infinite radius. Consider an elastostatic state in the infinite domain, in the
absence of boundary conditions. Therefore, we adopt a polar coordinate system, whose derivatives
with respect to angular variable ( ) vanishes owing to cylindrical symmetry. Neglecting the
variable in polar coordinate system, the bi-harmonic operator may be written as follows:
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Whereas, G function do not use in calculation of m
kl  and m

kl  we can sort differential equation 3.12 by
G  and straightly it is obtained from solving differential equation.
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Homogeneous and particular solutions of aforesaid differential equation can be obtained as follows
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iC in complementary solution is selected as singularity problem is not generated in continuance.
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After simplification, the first derivative of Galerkin function is obtained as the following form:
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The second and third derivative of G function may be easily expressed as
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where 221 RZ  is selected for simplicity.

By substituting Eqns. 4.7, 4.8 and 4.9 into Eqns. 3.13 and 3.14, the final simplified relations of
m
kl and m

kl  may be obtained as followings:
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It should be noted that after appropriate selection iC  in complementary solution, the expressions of
m
kl  and m

kl  kernels are nonsingular and their limiting values of coincidence of collocation point and
boundary node, as 0R , can be evaluated as the following forms:

0 0
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kl klR R
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5. NUMERICAL DISCRETIZATION

By substituting Eqn. 2.3 into Eqn. 2.2 and using Eqns. 3.4 and 3.5, the following expression may be
obtained:

M

m

m
j

m
kjlk

m
kjlk

m
kjlk

klkklkklk

upc

puupuc

1

**

**

]dd)([

dd)()(

(5.1)

This equation can be employed as the basic equation for a boundary element approach with no domain
integration. Quadratic shape functions are used for any element to represent its displacements and
tractions. Finally, the results of discretizing the boundary into elements can be written in compact
form as follows:

GpHuuM (5.2)

where M  is mass matrix, u  is vector of acceleration, and H , u , G , and p  are the usual boundary
element vectors and matrices (for more details, see Dominguez, 1993)

Eqn. 5.2 shows a system of dynamic equilibrium equations that can be solved with a time-marching
scheme. Given certain boundary conditions and initial values, these equations are solved according to
the Houbolt finite difference scheme (Zienkiewicz and Taylor, 2000).



6. NUMERICAL EXAMPLES

The above-mentioned formulation has been implemented in a 2D BEM code in which, a minimum
required number of internal points is considered. In order to verify the nature and general behavior of
the method, two numerical examples are taken into account. To evaluate the accuracy and stability of
the proposed method, numerical results are compared with those obtained by exact analytical solutions
and/or by other boundary element results available in the literature.

6.1. Rectangular domain under step function loading

In the first example, verification of the algorithm especially in comparison with exact analytical
solutions is the main aim. A rectangular domain in plane strain condition (see Fig. 6.1), whose height
is twice its width, with tangential-traction free boundary condition sides is considered. The top side of
the rectangle domain is uniformly subjected to a Heaviside step function P(t) = H(t  0) representing a
suddenly unit applied load as shown in Fig. 6.1. The material constants are = 1.0 kg/m3, = 4 × 104

Pa, and = 4 × 104 Pa. Six boundary elements with no internal points are employed to discretize the
rectangular domain, as depicted in Fig. 6.1. The numerical results of the proposed RBF, for cases in
which = 0.25, 0.5, 0.75, are compared with that of the analytical solution (Dominguez, 1993).
Moreover,  the  results  of  two  other  RBFs  (i.e.,  CSRBF  (Rashed, 2002b) and MQRBF (Samaan and
Rashed, 2007)) are considered for more comparison. It should be noted that the results of Refs.
(Samaan and Rashed, 2007, and Rashed, 2002b) are obtained using 12 boundary elements as well as a
few internal points, while the results of the proposed IMQ RBF correspond to a mesh of 6 boundary
elements with no internal point. Figs. 6.2 and 6.3 illustrate the vertical displacement of point A and
normal traction histories at point B, respectively. From these figures, one may easily observe that the
results of the present RBF show a good agreement with the analytical solution.

Figure 6.1. The geometry of the rectangular plane strain domain, modeled by 6 quadratic boundary elements
with no internal points, and the time history of the normal traction
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Figure 6.2. Dynamic response of vertical displacement at point A for the first example
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Figure 6.3. Dynamic response of normal traction at point B for the first example

6.2. Perforated strip subjected to tension stress

The second example illustrates a rectangular perforated plate in axial tension under plane stress
conditions (Fig. 6.4). The left and right edges of the plate are subjected to Heaviside step function
loading P(t) = 7500H(t  0). The material constants and geometrical properties of this example are as
follows: = 0.00785 kg/m3 = 8.08×106 N/cm2, = 1.21 × 107 N/cm2, length is 36 cm, and breadth is
20 cm. Due to the symmetry condition (Fig. 6.4), only one quarter of the plate is  assumed in BEM
analyses. In addition, the results of two other RBFs (i.e., (1 + R) RBF (Agnantiaris et al., 1996), and
CSRBF (Rashed, 2002b)) are illustrated for more comparison. According to three shape parameters (
= 0.25, 0.5, 0.75) from the proposed RBF, the displacement time history of point A (Fig. 6.4) is shown



in Fig. 6.5 on which the results of two other RBFs (Agnantiaris et al., 1996, and Rashed, 2002b) are
also drawn.

In this example, the boundary is modeled into 15 boundary elements, and 17 internal nodes are
employed to improve the accuracy of the obtained results (see Fig. 6.4). As may be observed from Fig.
6.5,  the  results  of  the  present  study  in  the  all  cases  are  in  good  agreement  with  the  results  of  Refs.
(Agnantiaris et al., 1996, and Rashed, 2002b) which have been obtained using much more degrees of
freedom (37 boundary elements with 136 internal points).

Figure 6.4. The geometry of the perforated plate subjected to edge tensile traction, modeled by 15 quadratic
boundary elements and 17 internal points, and the time history of the traction
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Figure 6.5. Displacement time history at point A for the second example
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