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ABSTRACT 
An ANN-cum-fuzzy control scheme is developed here by training an ANN offline to establish a direct mapping 
of the control forces and command voltage (required to produce a target percentage of response control) from the 
structural response feedback. The training data set is generated by using a fuzzy logic control algorithm, which 
considers the dynamic characteristics of the MR damper by fuzzification (in place of the use of any analytical 
model) of the MR damper characteristics. These characteristics are represented by force-velocity and force-
displacement curves of the MR damper under sinusoidal actuation test. A ten-storey building frame is taken as an 
illustrative example. Analytical results indicate that a back-propagation training algorithm with three layers 
architecture can be effectively used for training the ANN. A minimum number of response measurements are 
required to be provided as inputs to train the ANN so that it can capture the overall structural behavior and can 
effectively predict the command voltage for the MR dampers employed to control the responses. 
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1. INTRODUCTION 
 
Structural control has emerged as a very effective technique for protecting structures from damage 
during earthquakes. One category of control algorithms are conventional methods which use 
mathematical models. The other category includes intelligent control algorithms which are based on 
the theories of fuzzy logic, neural networks or their combinations.  The use of fuzzy inference system 
(FIS) in developing a semiactive controller or in modeling a MR damper calls for transforming human 
knowledge or experience into fuzzy rule bases or fuzzy if-then rules (Symans and Kelly, 1999; Choi 
et. al., 2004; Wilson and Abdullah, 2005; Bhardwaj and Datta, 2006; Ok et. al., 2007). Therefore, the 
effectiveness of the methods based on fuzzy logic depends on the choice different parameters defining 
the fuzzy rule bases. It cannot learn the rules by itself or cannot tune the parameters so as to minimize 
the output error or to maximize the performance effectiveness. This limitation of the fuzzy logic theory 
can, however, be overcome by using a neuro-fuzzy system. One such system is ANFIS (Adaptive-
Network-Based Fuzzy Inference System). It is an architecture, functionally equivalent to a Sugeno 
type fuzzy rule base and is a method for training the existing rule base with a learning algorithm based 
on a collection of training data. However, the standard ANFIS algorithm available in the MATLAB 
becomes unsuitable for handling large size problems having many inputs. This problem can be 
addressed by separately training a neural-network and use it in the control theory (Ghaboussi and 
Joghataei, 1995; Chen et. al., 1995; Ni et. al., 2002; Xu et. al., 2003). 
 
In the present work, an ANN-cum-fuzzy control scheme is developed by training an ANN offline to 
establish a direct mapping of the control forces and command voltage (required to produce a target 
percentage of response control) from the structural response feedback. The control scheme does not 
require the use of either an emulator network or an observer. The training data set is generated using a 
control algorithm developed based on fuzzy logic. The reason for using fuzzy control algorithm for 
training the ANN is to consider the dynamic behaivour of the MR damper by directly fuzzyfying the 
hysteretic curve of the damper. The motivation for using the trained ANN is to replace control 
algorithms by ANN chips (weightages) in the LabVIEW for online control experiment or prototype 



use. In order to demonstrate the effectiveness of the control strategy, a ten storey building frame is 
taken and is subjected to earthquake ground excitations. 
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Figure 1. Schematic diagram of the fuzzy control system; 
 
 
2. DYNAMIC BEHAVIOUR OF MR DAMPER 
 
Mechanical model of MR damper, based on Bouc-Wen hysteresis relations, was developed by Spencer 
et. al. (1997). The dynamic behaviour of an MR damper is characterized by its response to sinusoidal 
displacement excitation and such experimental results are available in literature (Spencer et. al., 1997; 
Dyke et. al., 1996). In the present study, a target curve is generated by the fuzzy logic for voltage 1.5 
volts for a sinusoidal actuation of frequency 2.5 Hz and amplitude 1.5 cm. 
 
 
3. SEMIACTIVE CONTROL USING MR DAMPER 
 
As mentioned before, the semiactive control using MR damper has been developed by utilizing the 
theory of bang-bang control or clipped-optimal control. In both the control theories, the control force, 
the voltage to be applied to the MR damper at any instant of time are obtained analytically for a given 
state of the system. For this purpose, either Lyapunov’s stability criteria or Riccati equations are 
solved. The development of the theory requires the dynamic properties of the structure and a 
mathematical modelling of the MR damper. In fuzzy logic control algorithm, fuzzy rule base is used to 
obtain the control force and the voltage to be applied to MR damper for given damper characteristics. 
For this purpose, two sets of fuzzy rule bases and fuzzy algorithms are developed – one for 
fuzzification of the force – velocity characteristics of the MR damper, which is known from the 
experimental test, and the other for the development of the control algorithm, which will provide the 
desired control force to the structure for a given state of the system. Note that the desired control force 
applied to the structure is consistent with the voltage applied to the MR damper. This is achieved by 
integrating the two fuzzy algorithms as mentioned above.  
 
The entire operation is described with the help of Fig 1. One or more of the response quantities of the 
structure, subjected to earthquake ground acceleration, is provided is provided as input to a fuzzy 
controller in the feedback loop. The controller performs the control operation in three stages: 



Stage 1: The controller generates elasto-plastic backbone curves corresponding to different prescribed 
damper capacities. This is achieved with the help of a fuzzy logic, which is developed by defining sets 
of input and output membership functions and fuzzy inference rules. 
Stage 2: In the next stage, hysteretic curves with strain hardening are generated by incorporating 
required horizontal and vertical shifts. The implementations of horizontal and vertical shifts are shown 
in Figs 2 and 3; the final backbone curve generated is shown in Fig 4. For this, a fuzzy rule base is 
developed to generate weightages. A value of the maximum horizontal shift is provided as input. In 
order to test the algorithms developed, the force-velocity hysteresis curves for voltage 1.5 volts 
obtained using the fuzzy rule base for a sinusoidal actuation of frequency 2.5 Hz and amplitude 1.5 cm 
is compared the target curve in Fig 5. It is seen from the figures that both these curves match well with 
each other.  
Stage 3: In the last stage, a fuzzy control algorithm determines the control force and the corresponding 
voltage for a given state of the system. A fuzzy rule base generates the desired values of the 
weightages at different time steps. In case of real time experiments, this command voltage is supplied 
to the MR damper, which then produces the desired control force. 
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4. THEORETICAL DEVELOPMENT OF CONTROL SCHEME  
 
Considering a MDOF structure with  degrees of freedom, subjected to earthquake ground 
acceleration 

n
( )gx t&&  and assuming that the control forces  are adequate to keep the entire structure 

within the elastic range, the equation of motion can be written as 
f

 
                    ;  Mx Cx Kx f M+ + = Γ − Λ&& & z Az Bf E= + +&    ;   y Cz Df ν= + +                            (4.1)  gx&&  gx&&
 
where x is vector of relative displacement, f is a vector of control force corresponding to  number of 
dampers and 

cn

gx&&  is ground acceleration. ,  and  are mass, damping and stiffness matrices of 

appropriate size.  represents an   matrix denoting the control force actuation on the structure 
due to the location of dampers and is a vector of unity. In the usual state space form, 

M C K
Γ cn n×

Λ A  is a 
 system matrix,  is a  control matrix, 2 2n n× B 2 cn n× E  is a 2 1n×  disturbance matrix,  is a C

2p n×  measurement matrix and  is a D cp n×  matrix. z  is a 2 1n×  state vector,  is a y 1p×  vector 
of measured outputs, ν  is a 1p×   measurement noise vector. A ten-story building frame available in 
literature (Yuen et. al., 2007) is considered. The semiactive control using MR damper involves 
fuzzification of the MR damper hysteresis curve and consequently, the development of the fuzzy logic 
control algorithms. The control algorithm is described in detail in Das et. al. (2012). For training the 
neural networks, the fuzzy semiactive control algorithm described in the above-mentioned literature is 
used for generating the training data and real earthquakes of different peak ground accelerations are 
used. Since multiple dampers are used, separate training data sets are generated for each damper. 



 
4.1 Training of Neural Network 

For training the neural networks, the fuzzy semiactive control algorithm described earlier is used for 
generating the training data and real earthquakes of different peak ground accelerations are used. Since 
multiple dampers are used, separate training data sets are generated for each damper. To start with, 
inputs to be given to the networks were taken to be as fewer number of structural responses as was 
possible because the more the number of inputs, the more extensive and time consuming the training 
process becomes. It was, however, found that unless a minimum number of structural inputs were 
considered, the networks failed to capture the overall structural behaviour and hence, the training was 
not effective. Finally, the training data are generated by taking the response measurements taken from 
three points (first, sixth and tenth floors) in case of the ten storey building frame. The measured 
responses from each point include relative displacement, relative velocity and absolute acceleration. 
The ANN is trained for producing control signals for some percentage reduction of a response quantity 
such that the other response quantities are also controlled significantly. This requires experience and 
some trial runs. After giving some trial runs, a target reduction for base shear for the ten storey 
building are considered. The output quantities are the control force generated by the MR damper and 
the command voltage required to generate that force. For the case of ten storey frame, only control 
force is considered as output in order to keep the training time within reasonable limit. Each of the 
input and output variables is normalized by dividing it with the absolute maximum value of that 
particular variable in the entire training data set. Three layer back-propagation neural networks 
consisting of an input layer, a hidden layer and an output layer are considered in the study. Choosing a 
learning rate of 0.001, each network is initially trained for 10000 epochs; then, if required, the ANNs 
are further trained for more number of epochs. The ANNs are trained in offline mode with the help of 
SNNS (Stuttgart Neural Network Simulator) software. 
 
4.2 Testing of Neural Network 
 
The neural networks are tested for (i) one of the data sets for which it was trained (known data) and  
(ii) for an earthquake ground motion (unknown data), which was not included in the training data set. 
For testing the ANN with the known data, the time-histories of the input variables (the measured 
responses at different floor levels and the target percentage control of a particular response quantity) 
corresponding to this earthquake are provided at the input nodes of the trained ANN. Then, output 
values obtained are then compared with the time-histories of these same output variables in the 
original training data set. This can be termed as offline mode of testing the neural network. The ANNs 
are also tested in the online mode. In order to do that, a MATLAB function of the forward model of 
the network is written, extracting the values of the connection weights and bias from the trained 
network. Then, in the Simulink model of the structure, the block consisting of the fuzzy model of the 
MR damper is replaced with the forward model of the neural net. With the target percentage reduction 
of a response quantity as the additional input provided to the ANN, the Simulink model of the 
structure is analyzed for the ‘known’ earthquake excitation and the results are obtained. In both the 
modes of testing, the target percentage control is based on the percentage control, which is actually 
obtained by analyzing the structure using the fuzzy model. The measured responses (computed 
controlled responses) at different floors obtained from this analysis are compared with those obtained 
by analyzing the structure with the fuzzy model of the MR damper. The difference between the time 
histories of the control forces, voltage, and the response quantities serves as a measure of the 
efficiency of the neural network training. Another measure of efficiency is the difference between the 
target percentage reduction of the particular response quantity in the training data and that obtained for 
the same response quantity using the forward model of the ANN in the analysis. 
 
The trained ANN is tested with the unknown data in the same way, i.e., in the offline as well as in the 
online mode. For offline testing, the structure is first analyzed for the ‘unknown’ earthquake 
excitation. The measured responses (i.e., the responses obtained analytically) at different floor levels 
and the percentage control (for the given response quantity) achieved become the input for the trained 
ANN, which is then tested and the efficiency of training is found out in the same way as described 



before. For online testing also, the same procedure as in the case of the ‘known’ data is followed. The 
unknown data sets are generated by finding the controlled responses of the structure for additional 
harmonic excitation, i.e., with different combination of frequency and amplitude, which are not used in 
the training data set.  
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L SOLUTION AND DISCUSSIONS 

ffectiveness of the proposed semiactive neurocontrol system using MR dampers, 
ations are performed. Simulation results of the proposed neurocontrol system are 
those of a fuzzy control system as well as an uncontrolled system. A ten storey 
vailable in literature (Yuen et. al., 2007) is considered. The mass of each floor of this 
g and the interstorey stiffnesses are 948.70, 836.99, 886.11, 889.33, 925.77, 881.83, 
872.11 and 829.86 N/cm for the first to the tenth storey, respectively. The values for 

ping coefficients αm and αk  are 0.1 s−1 and 7.36 × 10−4 s. Using the MR damper 
iven by Spencer et. al. (1997), the control of responses of the under El Centro 
tained using reliability based control algorithm, using probabilistic concept. As a 
mparison of the controlled responses obtained by Yuen et. al. (2007) with the 
 control algorithm has not been possible because the latter is based on deterministic 
two dampers of 3000N capacity were installed at the bottom two storey levels, the 
ol was of the order of 50-55%. When more number of same dampers are used, the 
nstable. As a consequence, softer damper characteristics are used to control the same 

to do that, softer backbone curves are artificially generated and with these curves as 
e fuzzy logic is modified. The target curve and the curve generated by the fuzzy logic 
olts for a sinusoidal actuation of frequency 2.5 Hz and amplitude 1.5 cm are compared 
en from the figure that both the hysteresis curves compare well with each other. The 
 developed for the softer damper has been used to control the response of the frame. 

 of these neural networks (i.e., the number of nodes in the input, hidden and output 
ely) is also shown in Fig 6. 
purpose of analysis, nine different earthquake excitations, are considered, namely 
arkfield, Imperial Valley, Loma Prieta, Koyna, Coalinga, Tabas and San Fernando 

ese excitations are scaled appropriately in order to have peak ground accelerations 



uniformly distributed over a range varying from 0.25g to 0.5g. In addition to these, N-S component of 
1940 El Centro earthquake is also considered in the study. It is assumed that the responses of the ten 
storey building remains within the elastic range for the above mentioned earthquake excitations.  
 
The Kobe Takatori and 1.5 times El Centro earthquakes are considered as ground excitations for 
testing the ANNs for generating the known and unknown data sets, respectively. Comparison of the 
time histories of first storey and fifth storey damper forces in the offline mode are shown in Fig 7. For 
the known earthquakes, the training data are used and for the unknown earthquake, the data is 
generated by analyzing the fuzzy model with the unknown earthquake as the ground excitation. It is 
seen from the figures that the outputs generated by the trained neural network compare well with those 
obtained analytically. The trained ANNs are also evaluated in the online mode. The response time 
histories are compared in Fig 8 for Parkfield earthquake (known data) and Figs 9-11 for 1.5 times El 
Centro earthquake (unknown data). Relative displacements, absolute acceleration and interstorey drifts 
are compared in these figures. The controlled responses obtained by using the trained ANN online are 
compared with those obtained by using the fuzzy model; the uncontrolled responses are also shown. It 
is seen from the figures that both responses agree well with each other both for known as well as for 
unknown data. Fig 12 compares the damper responses (force-displacement and force-velocity curves) 
in the online mode. It is clearly seen from these figures that the characteristics of the damper force 
computed by using the fuzzy model are reasonably close to those obtained by using the trained ANN. 
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Figure 7. Comparison between the time-histories obtained from training data and from trained ANN output for 
1.5 times El Centro earthquake (unknown data): (a) first storey damper force and (b) fifth storey damper force. 
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Figure 8. Top storey relative displacements of the ten storey building frame for Parkfield earthquake (known 

data): (a) time histories of responses and (b) comparison of responses 
 

In order to evaluate the effectiveness of the neural network training, some numerical values of 
percentage reduction of responses and maximum control forces are listed for comparison in Table 1. 
The percentage control of different responses of the first, third, fifth, sixth and the tenth storeys, the 
base shear and the maximum control force of the first and the fifth storey dampers are considered. In 
the tables, the figures shown in brackets represent the target response control percentage values which 
have been provided as inputs to the ANNs. These values are based on response reductions obtained by 
analyzing the structures using fuzzy control algorithm. It is seen from the tables that the differences 
between the target percentage control and percentage of control achieved by using the trained ANN are 
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not significant for all response quantities. Further, ANN predicted maximum control forces match 
quite well with those of the target ones. 
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Figure 9. Top storey relative displacements of the ten storey building frame for 1.5 times El Centro earthquake 
(unknown data): (a) time histories of responses and (b) comparison of responses 
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Figure 11. Top storey interstorey drift of the ten storey building frame for 1.5 times El Centro earthquake 
(unknown data): (a) time histories of responses and (b) comparison of responses 

 
Thus, it is clearly evident that the trained ANNs work well for both known and unknown problems. 
The ANN-cum-fuzzy control scheme developed here is, thus, able to provide an ANN which can 
predict the required control force and/or input voltage to MR damper. The ANN can work well online 
and is trained to capture the experimentally obtained force-velocity characteristics of the MR dampers 
directly by fuzzification. In the subsequent chapter, use of the neural network developed by ANN-
cum-fuzzy technique in the control experiment of model building.  
 
 
6. CONCLUSIONS 
 
An ANN-fuzzy control scheme is presented for the seismic control of building frames for future 
earthquakes. The control scheme has the advantages that it can consider (i) the characteristics of the 
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dynamic behaviour of the MR devices, (ii) limited number of feedback measurements and (iii) a target 
reduction in response. The control scheme requires feedback of a limited number of floor 
displacements, velocities and acceleration, and a target percentage reduction to be provided as inputs 
to the ANN. The outputs of the ANN are the control forces. The control scheme is developed for a ten 
storey frame, with MR dampers in the first five storeys. Feedback measurements are taken from the 
first, sixth and the tenth floors. Following are the salient conclusions drawn from the study: 
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Figure 12. Comparison of the first storey damper responses for 1.5 times El Centro earthquake (unknown data) 

 
          Table 1. Comparison of the percentage control for different responses and the maximum control 

forces obtained by using the fuzzy model and the ANN for the ten storey building frame 
Fuzzy Model ANN 

Percentage Control (%) F   
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x +
dx ++

ax&& #
bV *  x  

dx  ax&&  bV   

            Parkfield Earthquake (Known Data) 
1 91.9 … 31.1 … 432 91.6 … 29.3 … 440 
3 … 90.4 … … … … 89.6 … … … 
5 … … … … 259 … … … … 253 
6 90 76.6 45.8 … … 89.6 76.1 45.0 … … 

10 86.5 55.4 61.0 … … 86.2 55.0 60.9 … … 
BS … … … 91.9 … … … … (92); 91.6 … 

            1.5 times El Centro Earthquake (Unknown Data) 
1 82.8 … 22.6 … 1364 82.0 … 12.2 … 1339 
3 … 79.3 … … … … 78.8 … … … 
5 … … … … 952 … … … … 939 
6 80.0 59.5 69.5 … … 79.9 59.5 65.4 … … 

10 76.5 62.8 65.3 … … 76.5 62.4 65.5 … … 
BS … … … 82.9 … … … … (83); 81.9 … 

            Note: (+) Relative Displacement; (++) Interstorey Drift; (#) Absolute Acceleration; (*) Base 
Shear [Figure in bracket indicates Target Percentage Control]; (F) Maximum Control Force 

 
1) A minimum number of response measurements is required to be provided as inputs to train an 

ANN so that it can capture the overall structural behaviour and can effectively predict for 
known and unknown data. In the present study, they are found to be displacement, velocity 
and acceleration from two floors. 

 
2) Offline training of ANN with the generated data from fuzzy controller is found to be more 

efficient for large number of variables and data set than ANFIS. This is because ANFIS cannot 
be trained for large size problem due to lack of available memory for performing computation 
in MATLAB. 

3) A back-propagation training algorithm with three layer (input, hidden and output) architecture 
can be effectively used for training an ANN for structural control applications. The earthquake 
ground acceleration records used for generating the training data, however, play a major role 
in proper training of the ANN. 



4) Outputs obtained by using the trained ANN are in good agreement with those obtained from 
the fuzzy controller for the building frame, indicating that the ANNs are well trained. 

5)  Although the ANNs are trained offline, the effectiveness of the ANNs for online use is 
demonstrated with the help of the example problem. 
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