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SUMMARY:  
Understanding the spread of inelastic deformations at various stages of loading is a particularly 

difficult problem for bridge structures subjected to multiaxial dynamic loading. A high-resolution 

model of a bridge column was developed using the computer program ABAQUS and calibrated using 

the measured displacement field in a column of a bridge system subjected to dynamic biaxial loading 

in an earthquake simulator. The bridge system was subjected to a succession of test trials with 

increasing earthquake intensity. Computer simulations were performed of the complete sequence of 

trials, providing information about the variation in the spread of plasticity with the intensity of 

loading. The main goal of this study was to investigate changes in the spread of plasticity of the bridge 

column, quantified in terms of curvature demand along the column height and longitudinal 

reinforcement strain, associated with the displacement demand at various levels of earthquake 

intensity.  
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1. INTRODUCTION  

 

Bridge systems are proportioned to maintain inelastic deformations within the columns in order to 

prevent damage to the superstructure. This constitutes a significantly different design philosophy than 

used for building structures, in which it is preferred to maintain inelastic deformations in the beams to 

protect the gravity load resisting system. For this reason accurate characterization of the behavior of 

bridge columns in the inelastic range of response is important for the development of improved 

computer models to simulate the response of bridge systems under earthquake loading. Being able to 

determine the spread of inelastic deformations in reinforced concrete bridge columns is very important 

to evaluate the performance of bridge systems. High-resolution analysis methods are a valuable tool in 

this process when bridges are subjected to multiaxial loading, or when the structural components have 

a complex geometric shape.  

 

A high-resolution model of a bridge column was developed using the computer program ABAQUS 

(Simulia, 2009) and calibrated to estimate the displacement field that was recorded during the dynamic 

test of a bridge system under biaxial loading (Alemdar et al., 2011a). The effect of various simulation 

parameters were investigated (Alemdar et al., 2011a) to determine the goodness-of-fit of the 

displacement and rotation fields recorded during the dynamic response. 

  

The primary objective of this study was to use the calibrated model to examine the effect of 

displacement demand on the spread of plasticity of the bridge column by evaluating the curvature 

demand along the column height and longitudinal reinforcement strain at various levels of earthquake 

intensity. 

 

 



2. FINITE ELEMENT MODEL OF THE BRIDGE COLUMN 

 

The reinforced concrete bridge system analyzed in this study was tested at the University of Nevada 

Reno (UNR) laboratory under a series of uniaxial and biaxial earthquake trials with increasing level of 

intensity (Nelson et. al., 2007). The test specimen is described in a previous study (Alemdar et. al., 

2011b). Two different grids were painted on the surface to monitor the displacements of the columns 

during the earthquake trials (Fig. 1). The intersections of the thick vertical and horizontal lines in both 

regions were numbered (Alemdar, 2010) as shown in Fig. 1.  

 

 

Figure 1. Bottom and top grid systems 

 

 

Figure 2. Finite Element model and boundary conditions for bridge column: 

(a) ABAQUS model and cross-sectional view (RP represents the location of the rotational spring), 

and (b) sketch illustrating the boundary conditions imposed on the column 

 

A three-dimensional finite element model of the east column of Bent 3 was developed using the 

computer software ABAQUS (Simulia, 2009). One half of the two-column pier frame system, 

including the east column, a 23-in. (584-mm) segment of the cap beam, and the footing (Fig. 2a), was 

(a) (b) 



defined in the model. The computer model had a total of 11,750 elements, and the response was 

analyzed using the implicit static general solution scheme with automatic stabilization available in 

ABAQUS (Simulia, 2009). A Linux computational cluster with a total of 384 processors was 

employed to perform the simulations (Alemdar et al., 2011b). 

 

2.1. Material Models 

 

Concrete in the cap beam and the foundation block was modeled as a linear-elastic material because 

these two structural elements had much larger capacity than the column and experienced no 

observable damage during the test trials. Concrete in the column and in the connections was defined 

using the damage plasticity model implemented in ABAQUS (Simulia, 2009). Two different sets of 

material properties were defined for the concrete in the core and the shell to account for the 

confinement effects provided by the spiral reinforcement along the column height. The Mander unified 

stress-strain model under monotonic loading at slow strain rates (Mander, 1984) was taken as the basis 

of the stress-strain curve in compression for the concrete in the core (Alemdar et. al., 2011b). A 

maximum strain rate of 0.05 strain per second was adopted in the analysis following recommendations 

in studies (Wakabayashi 1986, Hosoya et. al. 1997, Mahin et. al. 1972) for reinforced concrete 

structures subjected to severe earthquake ground motion. 

  

The modulus of rupture of the concrete in tension was taken as  (in units of psi). The softening 

effect of concrete in uniaxial tension, after cracking, was studied to find the best curve for the analysis 

of the model. Equations proposed by Bhide (1987), Vecchio and Collins (1982), and Collins and 

Mitchell (1987) were evaluated and the Bhide (1987) tension softening model with a cracking angle of 

35° was chosen due to the best performance in the response.  

 

Linear elastic behavior was assumed for the cap beam and foundation block because of the higher 

stiffness and yield moment in the cap beam (Ig = 4200 in
4
, 1.75x10

9
 mm

4
, Mn

+
 = 210 k ft, 284700 

kNmm and Mn
-
 = 180 k ft, 244060 kNmm) than in the column (Ig = 1020 in

4
, 

 
4.31x10

8
 mm

4
, and Mn = 

45 k ft, 61015 kNmm).  The moment of inertia of the cap beam was varied as a parameter 

approximately between the cracked (2000 in
4
, 8x10

8
 mm

4
)

 
and gross moments of inertia (4200 in

4
, 

1.75x10
9
 mm

4
)

 
of the cross section. The cap beam was also assumed to be infinitely stiff for the 

additional analyses. 

 

A uniaxial steel model with combined isotropic and kinematic hardening properties was defined to 

simulate the behavior of the longitudinal steel. A typical stress-strain relationship for ASTM A706 

(ASTM 2002) Grade 60 steel was used to describe the isotropic parameters. The strength of the steel 

was adjusted to account for the effect of strain rate under dynamic loading by using the dynamic 

magnification factor. Kinematic hardening properties were defined to include cyclic strain softening 

according to experimental results by Ma et al. (1976). The results from the computational model and 

the experiment gave a close match for the stress-strain curve of a single element near the center of the 

steel bar as shown elsewhere (Alemdar et. al., 2011b).   

 

2.2. Finite Element Mesh  

 

The concrete mesh consisted of quadratic brick elements with twenty integration points. Two different 

segments were defined to model the cap beam. In the first segment, solid elements were used starting 

at the edge of the cap beam and having a length equal to twice the distance from the edge of the beam 

to the center of the column (Fig. 2a). In the second segment, a single rotational spring element was 

used from the end of the first segment to the center of the pier frame. The spring element was rigidly 

attached to a thin but infinitely stiff layer of transition elements at the center of the right face of the 

cap beam (Fig. 2b).  

 

The circular column, the cap beam-column, and the column-footing joint regions were modeled using 

3D continuum 8-node brick elements with twenty integration points. A reduced-integration scheme 

was used to decrease the computation time for the analysis. The solid element mesh for the cap beam-



column connection, the column-footing connection, and the circular column was generated taking into 

account the location of the longitudinal reinforcement (Fig. 2a). A coarse mesh with 4-in. (102-mm) 

elements was used in the remainder of the two joint regions. 1D 2-node ABAQUS (Simulia, 2009) 

wire elements were defined to model the longitudinal reinforcement and transverse steel hoops and 

linked to the edge of the solid elements using embedded constraints. The longitudinal steel had a 

cross-sectional area of 0.11 in.
2 

(71 mm
2
) and transverse hoops had a cross sectional area of 0.029 in.

2
 

(18.7 mm
2
) evenly distributed every 1.25 in. (32 mm) along the height of the column.  

 

Models with different element sizes in the connections and the column were analyzed to examine the 

sensitivity of the load-displacement relationship to mesh size. Computed load-displacement 

relationships under monotonically increasing lateral load for various mesh configurations were 

compared with (Alemdar et al., 2011b) load-displacement curves based on moment-curvature 

relationships and the implementation of the modified compression field theory in the computer 

program Response 2000 (Bentz, 2000). This study showed that the load-deformation curve of the 

column was sensitive to mesh size (Alemdar et al., 2011b), with smaller mesh sizes resulting in lower 

column stiffness. The 1-in. (25-mm) mesh model provided the closest match to the force-displacement 

response prior to yielding computed using the MCFT, with slightly larger displacements near yield 

that are attributed to the effect of slip of the reinforcement.  

 

The cap beam and the foundation block provided significant confinement to the concrete in the joints 

because of the embedded longitudinal reinforcement into the cap beam and into the foundation block; 

therefore, simulations were performed by modeling slip solely through the softening effect of the 

concrete in tension. This assumption was consistent with the damage pattern observed in the 

specimens, which experienced negligible damage in the cap beam-to-column and foundation-to-

column connections (Alemdar et. al., 2011b).  

 

2.3. Loads and Boundary Conditions  

 

The axial load on the column was calculated based on the tributary area of the column and consisted of 

an imposed weight of 47.2 kips (210 kN) applied as a uniform pressure at the top surface of the cap 

beam in the FE model (Fig. 2b). The two lateral components of the earthquake simulator displacement 

were imposed at the bottom surface of the footing and the recorded displacement components recorded 

with LVDTs were imposed at the top of the column, in the cap beam (Fig. 2b). Vertical motion was 

restrained at the top of the footing (Fig. 2b) to simulate the effect of postensioned rods and steel plate 

washers used to tie the footing to the earthquake simulator.  

 

The ground motions used in the FE model were the scaled components of the Century City Country 

Club record from the 1994 Northridge, California earthquake. This earthquake record was used in a 

total of 11 trials, six of them with the bridge subjected to a single component in the longitudinal 

direction and five trials subjected to both components (Alemdar et. al., 2011b). These 13 trials induced 

a maximum drift ratio on the column of approximately 4% in the longitudinal direction and 4% in the 

transverse direction.   

 

2.4. Solution Algorithm  

 

ABAQUS (Simulia, 2009) offers several solution algorithms for problems with unstable nonlinear 

behavior, based on both implicit and explicit algorithms. An implicit static solution algorithm was 

chosen because of greater accuracy in estimating the displacement field of the column and using 

significantly less CPU time than an implicit dynamic solution algorithm.  

 

Although the concrete in the core of the column is well confined, and consequently less prone to cause 

convergence problems, the concrete in the shell presented a significant challenge. Because the most 

severe convergence problems are posed by local instabilities in the concrete shell, which have a 

relatively small effect on the overall response of the column, convergence was achieved without 

meaningful loss in precision by setting the dissipated energy fraction of the automatic damping 



algorithm to 0.002 and relaxing the convergence criteria for the ratio of largest residual to average flux 

norm and the ratio of largest solution correction to the largest incremental solution value.  

 

2.5. Parameters of the Finite Element Study 

 

The loss of lateral load capacity is generally defined as the point in the load-deflection or moment-

deflection relationship corresponding to a reduction of 20% from the maximum moment or shear force 

recorded in an experiment (Priestley and Park 1987, Paulay and Priestley 1992, Bae 2005, and Berry 

et. al. 2008). Various researchers have concluded that strain penetration or bar slip (Paulay and 

Priestley 1992, Berry et. al. 2008, and Mander 1983), axial load demand (Bae 2005, and Watson and 

Park 1994), and shear span-to-depth ratio (Bae 2005, Sakai and Sheikh 1989, Tanaka and Park 1990, 

and Bayrak and Sheikh 1997) have a significant effect on the spread of plasticity. Many of these 

parameters were fixed in the available experimental sets.  

 

 

3. EVALUATION OF RESULTS FROM THE FINITE ELEMENT MODELS 

 

Figure 3 shows a comparison between displacement values inferred from video images and the 

optimum finite element model (fy = 75 ksi, Kg=10
8
 lb-in, wc= 0.8, and wt=1) at the point of peak 

displacement demand on the column during Test 4D trial, which had peak ground accelerations of 

0.5g in transverse direction and 0.6g in the longitudinal direction. Direct comparisons of the 

displacement field at peak response as shown in Fig. 3 are useful measurement to evaluate the 

accuracy of the FE model at a single point in time.  

 

 
Figure 3. Deformed shape of the bridge column at the maximum drift during Test 4D with fy=75 ksi (517 MPa), 

Kg=10
8
 lb-in (113x10

5
 N-m), wc =0.8 and wt =1.0.

 

The accuracy of the various models over the duration of the Test 4D was assessed by comparing 

computed displacement and rotation signals at several locations throughout the column with signals 

recorded with displacement sensors and video images. Comparisons of column rotations between FEA 

and LVDT results were performed based on values computed about an axis perpendicular to the axis 

of the cap beam. These rotations were considered to be more important between the two direct 

measurements recorded with LVDTs due to the relatively large stiffness and strength of the cap beam 

relative to those of the column, and because the top of the column was essentially unrestrained from 

rotation about the axis of the cap beam.  



Vertical displacement signals from LVDTs were used to interpolate the vertical displacements at grid 

points and at the surface of the column. Vertical displacement comparisons between FEA and digital 

imaging signals were performed on the basis of absolute displacement signals, while comparisons 

between FEA and LVDT signals were performed on the basis of the relative displacements between 

the two column elevations monitored by the LVDTs.  

 

The Frequency Domain Error index (FDE), developed by Dragovich and Lepage (Dragovich and 

Lepage 2009), was used to compare measured (or inferred) and computed response quantities. The 

FDE index uses the Fourier spectra to compare the composition of the two signals, with differences 

between the Fourier coefficients increasing the value of the error index. The FDE index quantifies the 

goodness-of-fit of the amplitude and phase of two signals and its value ranges between 0 and 1, where 

zero indicates a perfect correlation.  

 

The displacement field computed with the finite element model had input data recorded using analog 

sensors, while the measured displacement field on the surface of the column was inferred from digital 

video images. Because the two sensors systems performed independently of each other, a direct 

comparison of the signals obtained with each type of sensor during trial 4D showed the magnitude of 

the experimental error introduced by differences in the precision of the two sensor systems, which is 

independent of the modeling assumptions. The best match between the displacements inferred from 

digital imaging and the earthquake simulator signal yielded a 0.04 FDE amplitude error index and a 

0.12 FDE phase error index, for a total error of 0.16. These error values show that an excellent 

correlation was obtained between the displacements inferred from video images at the base of the 

column and the earthquake simulator signal.  

 

The lateral displacement signals at the top of the column were compared on the basis of FDE indices. 

The lateral displacements corresponding to grid Point 58 (Fig. 1), located at near top of the column, 

were compared with the combined components of the displacement transducers mounted on the bridge 

deck and the north abutment (DT7, DS1 and DS5 in Fig. 1). The FDE amplitude and phase error 

indices between the two signals were calculated to be 0.09 and 0.31, respectively, for a total error of 

0.40. These computed error values show that the correlation between digital imaging and the LVDT 

data at the top of the column was not nearly as good as that observed at the bottom of the column 

between the digital imaging data and FEA signals. The larger discrepancy between sensor readings at 

the top of the column could be associated with either one of the two sensor systems, flexibilities from 

anchors and attachment accessories as well as rotation of the cap beam. All of these factors introduce 

sources of experimental error in the analog sensor readings that do not affect the signal from the 

earthquake simulator nor the digital imaging.  

 

3.1. As-Built Simulations 

 

A set of simulations was carried out with modeling assumptions intended to represent the as-built 

characteristics of the frame pier as closely as possible. Material properties were defined based on 

reported measured values (f’c = 6.7 and fy = 64 ksi, 46 and 441 MPa) (Nelson et. al. 2007). The 

calibration of the finite element model is described in detail elsewhere (Alemdar et. al., 2011b). 

Rotation signals inferred from FEA and LVDT sensors were compared and the FDE error indices 

indicated that computed rotation values showed excellent correlations with the experimental data in 

both hinging regions of the column (Alemdar et. al., 2011b). 

 

As previously mentioned, the bridge was subjected to a sequence of 13 test trials with increasing 

ground motion amplitude. A simulation of the sequence of the 13 trials was performed using the finite 

element model to track the change in spread of plasticity as a function of the increase in deformation 

demand on the column. The displacement history along the transverse direction recorded at the top of 

the bridge deck is shown in Fig. 4. 

 

The spread of plasticity for each earthquake trial was calculated for the point corresponding to the 

maximum relative drift demand during the trial. The drift demand was quantified as the resultant of 



the longitudinal and transverse components of the drift ratio during the trial. The orientation of the 

resultant was calculated based on the relative magnitudes of the two components of the drift ratio.  

 

The spread of plasticity was calculated based on the deformations at the lower maximum moment 

region using two different approaches. In the first alternative the spread of plasticity was defined as 

the length in which the computed strain exceeded the yield strain of the longitudinal reinforcing bar 

subjected to the largest tensile demand in the column at the peak relative drift demand. The bars with 

the highest strain demand in tension and compression were those on opposite ends of the cross section 

following the orientation of the drift resultant. In the second alternative, the spread of plasticity was 

calculated as the length in which the curvature exceeded the nominal yield curvature at peak relative 

drift demand. The curvature was determined along an axis perpendicular to the orientation of the drift 

resultant.  

 

 
 

Figure 4. Displacement history recorded at the top of the bridge deck along the transverse direction for all test 

trials (using sensor DT7). 

The computed tensile strain and curvature demands along the column height for the peak drift demand 

of each test trial are shown in Figs. 5 and 6, respectively. For each trial, the largest tensile strain 

demand and the largest curvature demand were plotted vs. the peak drift demand in Figs. 7 and 8. 

Figure 7 shows that as the drift demand increased, the spread of plasticity defined in terms of the 

tensile strain demand on the reinforcement increased up to a value of 25 in. (635 mm), which was 

equal to two times of the diameter of the column. This value was recorded during a trial with a peak 

drift ratio of approximately 2.5%. For trials with larger drift demands, lateral deformation increased 

due to highly localized damage instead of an increase in the spread of plasticity. This is reflected by 

Fig. 8, which shows the peak tensile strain demand vs. the peak drift ratio for the trial. As shown in 

Fig. 8, the peak tensile strain demand continued to increase with the peak drift demand beyond a 

maximum drift ratio of 2.5%. 

 

The length of the plasticity based on the average curvature showed a slight increase for drift demands 

greater than 2.5%, with a maximum of approximately 12-in. (305 mm), which is equal to the diameter 

of the column (Fig. 7).  

 



 

Figure 5. Computed steel strain demand along the longitudinal reinforcing bars (column, cap beam and footing) 

at each peak relative drift ratio. 

 

Figure 6. Computed curvature profiles at each peak displacement. 

 

Figure 7. Plastic hinge length results for each earthquake trial at the peak relative drift ratio. 



 

Figure 8. Peak strain demand on the reinforcement at the peak relative drift ratio. 

 

4. SUMMARY AND CONCLUSIONS  

 

A finite element analysis with the optimum model parameters showed that inelastic deformations of 

the column during entire earthquake trials were concentrated almost entirely at the bottom of the 

column. Figures 6 and 7 show that in the column member, column response was driven primarily by 

the deformation of the longitudinal reinforcement. Finite element analyses of the bridge column during 

eleven earthquake trials indicate that the strain demands in the longitudinal reinforcement exceeded 

the elastic range in the lowest 25-in. (635-mm) segment of the column, which corresponds to 

approximately 2 times the diameter of the column. The inelastic strains in the longitudinal bars 

extended approximately 14 in. (356 mm) or approximately 1 column diameter or 37 longitudinal bar 

diameters into the joint. Computed curvature demands exceeded the yield curvature over a shorter 

segment of approximately one column diameter (Figs. 6 and 7). Computed strain demands in the 

longitudinal reinforcement showed that the highest strain demands occurred over the same bottom 12-

in. (305-mm) segment of the column where curvature exceeded the nominal yield curvature, although 

inelastic deformations extended over a distance 2 times larger. The plastic hinge reached a length of 

25 in. (2 times the diameter of the column) when the maximum relative drift ratio was approximately 

2.7%. The maximum total tensile strain calculated in the longitudinal bars at a drift ratio of 2.7% was 

approximately was 0.02, which corresponds to approximately 10 times the yield strain of the steel, and  

continued to increase with maximum drift demand until reaching a strain of 0.034 (approximately 15 

times the yield strain) for a drift ratio of 5.1 %.  

  

Simulation results showed that spread of plasticity calculated in terms of the tensile strain demand in 

the reinforcement was approximately twice as large as that computed on the basis of the curvature 

demand. Simulations also showed that the length of the column affected by inelastic deformations in 

the reinforcement increased up to a drift demand of 2.5%. For ground motions larger drift demands the 

increase in displacement was accommodated by highly localized deformations in the reinforcement, 

instead of distributed deformations over the plastic deformation zone.  
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