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SUMMARY:  
The paper shows challenges in active control strategy in view of the discrepancies observed between the FE 
model of the Benchmark Control problem for cable stayed bridge originally proposed by Dyke et. al (2000) and 
the one updated in the present study using system-identification data. It has been demonstrated that the updated 
model is strikingly different from the original model in terms of the dynamic properties. The design of an active 
controller is based on States Space approach and the states depend on the numerical model of the structure. The 
challenges of the active control regime have been discussed keeping in view this theoretical background of 
design of active controller. It is concluded that though there cannot be a direct correlation between model 
updating and resulting control efficacy, the updated model will represent a control strategy which is closer to the 
reality. 
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1. INTRODUCTION  
 
Cable-stayed bridges have gained popularity in the category of long span bridges over the last three 
decades due to improved structural performance and aesthetic appeal in comparison to suspension 
bridges. It is appreciated that development of a numerical model, which simulates natural frequencies 
and mode shapes of the structure, is an important step for computation of dynamic responses of a 
cable-stayed bridge. However, building a numerical model to represent dynamic characteristics of a 
cable stayed bridge is rather difficult as this flexible structure exhibits complex behavior with the 
flexural, lateral and torsional motions being very often coupled. As a consequence, structural 
characteristics and responses predicted by idealized finite element (FE) models have discrepancies and 
errors as compared to those obtained from the actual measurements. Lack of proper idealization of the 
complex structure is regarded as one of the main causes of such discrepancies in a numerical model 
for a cable-stayed bridge. Modal identification through full-scale testing is the most reliable method to 
determine the true dynamics properties (e.g. natural frequencies, damping ratios and mode shapes) of a 
structure. This serves as a basis for validating and/or updating an analytical model of a structure so 
that the model represents the actual structural properties and the boundary conditions.  

The protection of cable stayed bridges against seismic excitation is an active area of research. Active 
control system can offer the advantage of being able to dynamically modify the response of a structure 
in order to increase its safety and reliability. An active control strategy serves as a benchmark for 
evolving other control strategies. It also serves as a guide and reduces the number of iterations in 
building a real system for control implementation. In an active control strategy the control effort is 
dictated by the states of the numerical model and hence accuracy in modeling of the structure is of 
paramount importance. Thus, model updating would play an important role in evolving a more 
realistic active control strategy. The present work primarily addresses challenges of active control 
design in view of complexities in model updating. A real life cable stayed bridges have been 
considered for the study.  

 



2. DESCRIPTION OF THE BRIDGE 

The cable-stayed bridge used for this study is the Bill Emerson Memorial Bridge in Missouri, USA 
shown in Fig.2.1. Dyke et. al. (2000) formulated the benchmark control problem on this bridge with 
the design of an active controller against seismic excitation. The structural details of the bridge have 
been given in detail by Dyke et. al. (2000) and Caicedo (2003). The original and the line diagram of 
the bridge is shown in Fig. 2.1. 

                                 

(a) The bridge       (b) Line diagram of bridge[Dyke et. al. (2003)] 

Fig. 2.1 Bill Emerson Memorial Bridge, Missouri, USA 

3. FINITE ELEMENT MODEL 

The FE model of Bill Emerson Memorial Bridge, Missouri, USA was developed for benchmark 
control problem for seismic response of cable stayed bridge [Dyke et. al. (2000]. The model was 
subsequently modified and transferred to Matlab® environment and was used for structural health-
monitoring study by Caicedo (2003). The present model has been adopted from the study of Caicedo 
(2003). The finite element model has 573 nodes, 418 rigid links, 156 beam elements, 198 nodal mass 
elements and 128 cable elements. This has been illustrated in Fig. 3.1.  

 

Fig. 3.1 Finite element model 

 

4. ACTIVE CONTROL 

The block diagram for the active control system followed in the benchmark problem has been 
illustrated in Fig. 4.1. The control regime is governed by an LQG system, where the states are derived 
from the nonlinear static deformed configuration of the bridge. 



 

Fig. 4.1 Block diagram representation of active control system 

This plant corresponding to the FE model, has been excited by the earthquake excitation gx&& . The 

evaluation parameters 
ey have been calculated. The measurements 

my  have been fed to the sensors. 

The sensor output data has been given as input to the discrete controller as sy . The controller signal u 
has then been converted to an actuator signal f, which acts as input to the plant. 
 
The sensors have been defined to measure the outputs of the control evaluation model as, 
 

        ( )1 , ,s s
m t=x g x y&                                                        (4.1) 
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m t= 2y g x y                                                        (4.2) 

 
where, sx  is the continuous-time state vector of the sensors measured in Volts. The discrete-time 
control algorithm takes the form: 
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        ( )4 , ,c s
k k k k=u g x y                                                          (4.4) 

where, c
kx  is the discrete-time state vector at each sampling time t kT= , ku  is the discrete time 

control command and s
ky  is the discrete-time input vector from the sensors. In may be mentioned that 

the analog signal from the sensors, my  have been discretized in time and quantized through analog-to-

digital (A/D) converter as s
ky . The actuator-structure interaction has been neglected in this study. The 

interfacing of the actuators with the bridge model has been done through, 
 

         ( )5 ,k t=f g u                                                             (4.5) 
 

         ( )6 ,f k t=y g u                                                             (4.6) 
 

where f is the continuous-time force output (kN) of the actuators applied to the structure and fy is the 
continuous-time output vector from the control device output model, comprising forces produced by 
individual control devices, device stroke, device acceleration and has been used for evaluation of 
control strategy. 
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5. MODEL UPDATING 
 
The studies by Song et. al. (2006) and Caicedo et. al. (2006) established limitations of the FEM model 
in simulating the experimentally observed modal data. This necessitates the updating of the FEM 
model. 

5.1 System identification  

The bridge was instrumented extensively for collection of ambient vibration data [Celebi (2006)] with 
a total of 66 accelerometers located suitably over the structure and the surrounding soil. System 
identification is conducted using Subspace Identification (SSI) Method using 66 accelerometers. The 
flowchart in Fig. 5.1 compares SSI method from that of classical identification method. 

 

Fig. 5.1 Comparison between subspace method and classical method 

Out of the total of 66 accelerometers, evenly distributed in the superstructure, substructure and 
surrounding soil, 23 are vertical sensors, 11 are sensors in the longitudinal direction of the bridge and 
remaining 22 are oriented in the transverse direction. Some key locations have been shown in the Fig. 
5.2. Typical sensor-signals at two key locations have been shown in Fig. 5.3. These signals have been 
subjected to analysis for Power Spectral Density (PSD). Two typical results have been illustrated in 
Fig. 5.4. The peaks of the PSD curves indicate the predominant modal frequencies. The data from the 
sensors are subjected to Sub-Space Identification Process and modal characteristics have been shown 
in Fig. 5.5  

 

Fig. 5.2 Locations of sensors in the bridge 
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(a) mid-span  (b) top of left pylon              (c)  top of right pylon 

Fig. 5.3 Sensor signals at three key locations 

              

(a)  mid-span                                                                     (b) top of left pylon 

Fig. 5.4 Power Spectral Density of signals for two key locations  

 

Fig. 5.5 Details of modal identification by SSI 
 

 

5.2 Updating Parameters 

Three different types of parameters have been considered for updating the finite element model: (i) 
mass of the deck, (ii) moment of inertia of the spine beam, and (iii) the rotational stiffness of the 
connection between the deck and the pylons. A total of 66 translational lumped masses have been used 
to model the deck. Assuming that the mass distribution is symmetric due to the symmetry of the 
bridge, this can be reduced to 33 parameters to optimize, which is still a large number. As it is unlikely 
to have a sudden change in the mass along the deck, the numbers of parameters has been reduced to 3 
master masses at 3 locations along the deck. The other 30 masses have been calculated by fitting a 
spline between the 3 master masses. The support of the bridge at Bent 1, the support at Pier 2, and 
centre of the main span have been selected as the locations for the 3 master masses as shown in Fig. 
5.6.  



 

 

Fig. 5.6 Locations of master masses in the finite element modal 
 

Two parameters have been used to update the connection between the deck and the supports. Using 
the symmetry of the bridge one parameter has been used for Bent 1 and Pier 4 and a second parameter 
has been used for the connection at the Pier 2 and Pier 3. The introduction of rotary stiffness to the 
connections has been done through spring element as illustrated in the Fig. 5.7 and Fig. 5.8. Only one 
parameter has been used to update the moment of inertia of the spine beam. Therefore, a total of six 
parameters to be updated have been utilized in this study. 

 

Fig. 5.7 Finite element model with added rotary springs 

               

Fig 5.8 Spring connection in close view 
 

The method used for model updating has three main parts: (i) find a local minima based on the base 
finite element model; (ii) obtain other solutions using HSJ; (iii) obtain a local minima close to the 
solutions obtained in the previous step. For all steps a trust-region for non-linear minimization 
algorithm available in the Matlab® optimization toolbox has been used to minimize an objective 
function. In the first step, the function to minimize is described by the equation, 
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where n is the number of identified modes, MAC( iid ,φ , )(, pifeφ ) is the modal assurance criteria 

between the ith identified mode shape ( iid ,φ ) and the ith mode shape of the finite element model 

)(, pifeφ , iid ,ω  is the ith identified natural frequency, )(, pifeω  is the ith natural frequency of the finite 

element model, p is the vector of parameters to be minimized, iη  and βi  are the weighting factors for 
the ith natural frequency and mode shape.  The values of iσ  and βi have been determined using the 
identified modal parameters. These weights account for the deviations modal characteristics of a 
particular mode of the updated model from that of the corresponding identified mode. Constraints 
have been applied to the procedure to assure that the variation of the parameters is not higher than 
reasonable limits. Constraints have been used to allow a maximum variation of 5% in the masses and 
the moment of inertia.  The stiffness of the connection between the deck and the pylon can change 
from 0 to 100% of the highest value of stiffness matrix. The FE model by Caicedo (2003) has been 
used as the initial point for the optimization. 

The hypothesis in this study is that the results obtained from the first optimization will provide a 
solution of the problem; but this solution may not be unique and could be a local minimum. A process 
similar to HSJ is used to provide other solutions, which are different from the original solution. Here, a 
new objective function is then defined to obtain the (l+1) th solution as, 
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where pj is the jth solution, )(⋅  denotes dot product and .  denotes the norm. The value of this 
function is high if the dot product between the current solution and previous solutions is close to one, 
while the value of the function is low if the new solution is perpendicular to any other solution found 
before. Given that orthogonal vectors do not always provide a good fit for the finite element model, 
constraints have been used to assure that the new solution has a similar performance to the first 
solution. The constraint used for this optimization is described by the equation, 

          ( ) ( )l 1 lf fα+ ≤p p                                                       (5.3) 
 
where, ( )lf p  is the value of the objective function shown in Eq. 5.1 for the first solution found, 

( )1+lf p  is the value of Eq. 5.1 for the current solution and α is a constant. In this study α has been 
selected as 1.06 so as to discard the solutions that vary more than 6% in value of the cost function 
from that of the first minimum. The result from this second step provides solutions to the problem that 
are significantly different in the values for updating parameters but have similar values for cost 
function. The updated model has been selected from these solutions is the one that has the most 
realistic update for the selected parameters. 
 

6 RESULTS AND ANALYSIS 

The results of the optimization problem have been enumerated in this section.  
 
6.1 Optimization solutions 
 
The solutions of optimization (the second step of the procedure) have been presented in Table 2. A 
total of three optimization solutions with comparative values of cost functions have been listed in the 
table. Different optimized parameters have been listed in the table corresponding to each of these 
alternative solutions. The optimized variations for mass as a percentage of original mass has been 
shown for the master locations as in Fig. 5.7. Similarly optimized variation of moment of inertia of 



spine has been listed for different solutions. Thirdly, the optimum value of rotary stiffness at the bent 
and piers have been listed as a percentage of maximum stiffness of the FE model by Caicedo (2003). 
Out of these alternative solutions, the most logical one has been selected for updating the finite 
element model. 
 
The first solution is obtained using the model by Caicedo (2003) as the starting point. The differences 
in the three solutions have been appreciated from the tabular representation (Table 1). The first 
solution is based on decreasing the mass of the bridge, specially at the Pier 2 (Loc 2) and at the mid-
span. The moment of inertia has also shown to be decreased marginally in this solution. In contrast, 
the second solution has suggested considerable increase in the rotational stiffness of the connection at 
the Bent 1 and Pier 4. The mass at the Pier 2 (Loc 2) is shown to be slightly lower than in the first 
solution while it suggests for only a marginal decrease in the inertia. On the other hand, the third 
solution lowers the moment of inertia of the spine beam significantly. In this solution the masses at the 
Bent 1 (Loc 1), Pier 2 (Loc 2) decreases uniformly while that in centre of the span decreases by the 
same amount as in the first solution. The solution further suggests for an increase in the rotary stiffness 
at the Bent 1. The values for the objective function f(p) are also shown in the table and these are very 
similar for all the three solutions.  These values are about 44% lower than the value of f(p) for the 
original model by Caicedo (2003) which has been obtained as 1194.3. The second, third solutions have 
been observed to be within 6% of the first solution as specified by the parameter α in Eq. (5.3). 

6.2 Modal characteristics of different solutions 

Table 2 shows the first four natural frequencies of the model by Caicedo (2003) and those from the 
optimized models. The MAC values between the identified mode shapes and the numerical modes 
have also been represented in the table.  It is clear that the optimization procedure has resulted in 
models which have greatly improved natural frequencies as compared to those of the FEM model by 
Caicedo (2003).  The MAC values between identified and numerical modes were high in case of FEM 
model by Caicedo (2003). These get slightly reduced in case of the optimized models. 
 
6.3 Selection of updated model 

The first solution from Table 1 has been selected for updating the model. As indicated in the table, this 
solution is the most realistic solution with no unreasonable demand on parametric changes. The 
second solution has not has not been adopted in spite of having the lowest value for objective function 
as this solution puts an unreasonably high demand on the increase in rotary stiffness to the degree of 
50.34%.  

Table 1 Alternative solution from optimization 
 
Solution 

 
Mass (%) 

 
Moment of 

Inertia 
(%) 

 
Rotary Stiffness (%) 

 
f(p) 
(Eq. 
5.1) 

 
Loc1 

 
Loc2 

 
Mid-span 

 
Bent 1  
& Pier 4

 
Piers  
2 &3

1 -0.87 -5.00 -5.00 -2.05 0.02 0.00 494.8 
2 -1.17 -4.70 -5.00 -0.18 50.34 0.00 493.8 
3 -2.24 -2.03 -5.00 -4.95 8.68 0.00 498.4 

 
Table 2 Modal characteristics for alternative solutions 

 
Solution 

 

1ω  

 

2ω  

 

3ω  

 

4ω  

                                         MAC 

),( 1,1, feid φφ
 

),( 2,2, feid φφ
 

,( 3,3, feid φφ
 

),( 4,3, feid φφ
 

Original FE 
model 

0.291 0.392 0.608 0.674 0.955 0.947 0.968 0.973 

1 0.307 0.413 0.635 0.703 0.956 0.944 0.960 0.967 
2 0.308 0.413 0.635 0.703 0.956 0.943 0.957 0.966 
3 0.307 0.413 0.635 0.702 0.955 0.942 0.957 0.965 



6.4 Comparison of dynamic performance 
 
The dynamic performance of the original FEM model as reported by [Dyke et. al. (2000)] has been 
presented in the Fig. 6.1  

 
 

Fig. 6.1 Modal characteristics of original FEM model [Dyke et. al. (2000)] 
 

The mode shapes from the updated model together with the identified modal ordinates at the sensor 
locations have been presented in Fig. 6.2. The black dots in the figure indicated the identified modal 
amplitudes corresponding to the sensor locations.  

                     
 
 

                     
 

Fig. 6.2 Modes shown by updated FEM model 



7 CONCLUSION 
 
It has been observed that the dynamic performance showed by the updated model is quite different 
from the original FEM model. It is hence concluded that the model updating is an important issue that 
is to be addressed while devising any control strategy on a complex structure such as the cable-stayed 
bridge. However, the system identification being a complex issue, the same should be addressed 
properly. Unless this is done, active control cannot serve as a full-proof safety against seismic 
excitation of the structure. Thus the model updation and identification of modal parameter remains 
real challenge for the Engineers. 
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