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SUMMARY 
In this paper the results of a study to evaluate the performance of several control algorithms for a hybrid system 
constituted by a base isolated structure plus a semi-active device are presented. A variable fluid damper at the 
base level is considered aiming to reduce earthquake induced vibrations. The performance of the algorithms is 
compared using a two degree of freedom dynamical model subjected to two different artificial accelerograms. 
The performance is evaluated by measuring the reduction in relative displacements and accelerations and 
comparisons are also made with passive and active systems. The results show that a semi-active sky-hook 
damper can be a viable option for structural vibration mitigation when the input has varying frequency content. 
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1. INTRODUCTION 
 

Earthquakes have proven to be one of the most destructive natural disasters in the world. The 
traditional design methods for earthquake resistance of structures allow the occurrence of damage by 
using the inelastic deformation capacity of some elements. This kind of approach could be 
troublesome for structures that should be operational during and immediately after the occurrence of 
those events, such as: hospitals; energy power stations; communication centres; civil protection and 
fire station buildings. It is intended that structural relative displacements (inter-storey drifts) and 
accelerations are small in order to avoid damage and protect sensitive equipments from induced 
vibrations. The use of passive, semi-active (SA), active and hybrid control systems are typical ways of 
dealing with this problem; Soong and Spencer Jr. (2002). The semi-active control of seismically 
excited structures seems to be a promising proposal for civil engineering structures. The advantages of 
these systems compared with the others are: the capacity of adapting its characteristics in real time; the 
better overall performance when compared with passive devices; and lower power requirement, thus 
allowing for battery operation under proper conditions. A typical type of device that can be used for 
semi-active control is the fluid viscous variable damper. This type of devices consists typically of a 
hydraulic cylinder containing a piston which separates the two chambers that are connected by a 
hydraulic link. A control valve, like a solenoid valve or a servovalve is installed in the link to control 
the amount of fluid that flows from one chamber to the other. The control of the fluid through the 
valve can be performed in a continuous or in an on-off way; Symans and Constantinou (1999). In 
order to control the behaviour of those devices several control strategies have been proposed; Dyke 
(1996); Preumont (2002); Sadek and Mohraz (1998); Yoshida and Dyke (2004). One way to isolate 
the whole structure from ground motions and reduce both accelerations and inter-storey drifts is by 
using the base isolation concept; Kelly (1999). However, under near field actions increase in isolation 
displacement can lead to structural damage. An alternative solution is making use of hybrid systems 
(base isolation with active or semi-active devices); Shook et al. (2007). 
 
In this paper the hybrid system is explored for controlling civil engineering structures subjected to 
earthquakes. Different control algorithms are presented and formulated for use with the SA device. 
Numerical simulations are made considering a two degree of freedom (2DOF) dynamic model 
employing an SA device with different control strategies and excited by two different input actions. 
Comparisons between the control algorithms and with passive and active systems are presented. 



2. STRUCTURAL SYSTEM 
 

The model considered in this study is a 2DOF system 
subjected to earthquake loads at the base (Fig. 1.1). It is 
intended to examine the earthquake response of base isolated 
structures having SA devices (variable damper) at the base 
level. A satisfactory approach considered in building’s 
modelling is that: i) each floor has huge stiffness where the 
mass is concentrated; ii) the connections between floors are 
massless elements where the stiffness and damping is 
concentrated. In base isolated structures the superstructure is 
constructed over a base floor having a mass similar to the 
other floors which in turn is supported by bearings. For the 
purpose of this study the bearings are modelled as linear 
elastic and viscous damping elements. Additional damping is 
added at the base level by an additional device, which can be 
passive, active or semi-active. Fig. 1.1 shows a schematic 
view of the SA device considered in this study. The device 
consists of a hydraulic cylinder with a piston separating two 
chambers which are connected by a hydraulic link. One valve 
is used to control the flow from one chamber to the other. 
Although the mechanical behaviour of the device is non-
linear (force proportional to the square of flow, or velocity) a 
linear relationship is assumed, which is similar to a linearization around the operating point. Using this 
approach one arrives to the linear viscous damping model (force proportional to velocity) where the 
damping coefficient is dependent on the valve opening. This approximation is useful in the sense that 
can easily provide information in terms of a damping coefficient. On the other hand, experimental 
tests have shown that this model is sufficient for describing the damper behaviour over the frequency 
range of interest for structural control applications; Symans and Constantinou (1999). The main 
purpose of the base isolated structure employing an SA device (variable damper) is: i) to reduce 
relative displacement between floors (inter-storey drifts), mainly due to structural physical constraints; 
ii) reduce absolute accelerations in order to improve human comfort and mitigate damage of delicate 
equipments installed in buildings; iii) reduce the relative displacement at the base level in order to 
reduce the costs associated with devices (bearings and dampers) and flexible utility connectors; Kelly 
(1999). 
 
The properties of the model considered in this study were evaluated taking into account the physical 
SDOF model with adjustable stiffness developed at LNEC for studying the seismic behaviour of 
structures employing different energy dissipation devices; Morais et al. (2010). For the superstructure 
a typical 8 floor composite steel building is considered. According to the RSA (1983) the fundamental 
frequency can be estimated as f1=16/n, where ‘n’ is the number storeys, which in the present case leads 
to 2 Hz. The behaviour of the structure can be approximated by the behaviour of its first mode of 
vibration and thus simplified by a SDOF model. The first two expressions in Eqn. 2.1 are used to 
evaluate its natural frequency ‘ωs’ and damping ratio ‘ξs’: 
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Taking into account the physical model mass ms=3750 kg, the stiffness was adjusted (Eqn. 2.1) to 
ks=595 kN/m in order to tune the fundamental frequency with the natural frequency of the SDOF 
physical system. With the damping ratio of ξs=6,4 % the damping coefficient was evaluated (Eqn. 
2.1): cs=6,05 kN s/m. In order to reduce the fundamental frequency and increase the flexibility in the 
horizontal direction, low stiffness elements are introduced at the base level. This solution is called 
base isolation. An additional mode of vibration is added and the first one will have a shape with the 
superstructure vibrating over the bearings. The isolator natural frequency ‘ωi’ and damping ratio ‘ξi’ 

 

Figure 1.1. Structural System (2DOF) 
employing a semi-active (SA) variable 

damper. 
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are evaluated by the last two expressions in Eqn. 2.1. The characteristics considered for the isolation 
system are: mass mi=1000 kg; stiffness ki=195 kN/m; and a damping ratio of ξi=6,4 %. The natural 
frequency and damping are then fi=1 Hz and ci=3,90 kN s/m (Eqn. 2.1). This base isolation concept is 
improved by modifying the damping at the base level with an SA device (hybrid system). Controlling 
the damping coefficient it is possible to change the dissipative force in order to improve the 
mechanical behaviour of the whole system (2DOF base isolation structure plus SA device). It is 
assumed that is possible to change the damping coefficient ‘cv’ between two values: a minimum value 
‘cmin’, corresponding to 5 % of additional damping (to sum with ξi); and a maximum one ‘cmax’, 
corresponding to 77,2 % of additional damping (to sum with ξi); see sections 3.1 and 3.3. 
 
The equations of motion of the system (Fig. 1.1) are given by: 
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Eqn. (2.2) can be written in terms of relative quantities (accelerations, velocities and displacements) to 
the ground. The result can be expressed in a matricial form: 
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where: xrg=[xig xsg]
T=[xi-xg xs-xg]

T is the vector of relative displacements to the ground; the inter-storey 
drift is defined as ‘xsi=xsg-xig’; ‘ gx&& ’  is the input acceleration at the base; ‘Ms’, ‘ Cs’ and ‘Ks’ are the 

mass, damping and stiffness matrices; ‘I2,1’ and ‘G’ are the unitary column vector and the column 
vector that defines the input forces location; and ‘ f’ is the input force in the system. If a semi-active 
fluid viscous device is used the force is given by: 
 

 igvgivSA )( xcxxcff &&& ⋅−=−⋅−==  (2.4) 
 

where ‘cv’ is the variable damping coefficient. By applying the Laplace transform to both expressions 
in Eqn. 2.2 the following transfer functions are obtained: 
 

 

sisi
2

i
4

ss
2

s

ss
3

sisi
2

i

ss
2

sisi
2

i

ii
1

g

2

32

43

32

31

2

32

4

32

1

s

i

)(
1

)(

)(

with,

11

11

kksccsm
T

kscsm

ksc
T

kksccsm

ksc
T

kksccsm

ksc
T

F

A

s
TT

TT

TT

TT

s
TT

T

TT

T

A

A

++++⋅
=

+⋅+⋅
+⋅=

++++⋅
+⋅=

++++⋅
+⋅=



























⋅−
⋅

⋅−
⋅

⋅−⋅−=








 (2.5) 

 

where: ‘Ai’, ‘ As’, ‘ Ag’ and ‘F’ are the Laplace transforms of ‘ix&& ’, ‘ sx&& ’, ‘ gx&& ’ and ‘f’ respectively; ‘s’ is 

the complex variable. The terms ‘Ti’ are individual transfer functions. Eqn. 2.5 can be used to obtain 
the system’s absolute and relative displacements also. Another way to represent the system is in terms 
of state-space: 
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where: T
rgrg }{ xx &=z is the state vector; ‘y’ is the output vector, ‘A’ is the state matrix, ‘B’ and ‘E’ 

are input vectors; ‘C’ is the output matrix; ‘D’ is the feedthrough vector; ‘02,2’ is a null matrix; ‘02,1’ is 
a null vector, ‘I2’ is the identity matrix and ‘I2,1’ is the unitary vector. Matrices ‘C’ and ‘D’ are 
dependent on the selection of the output variables. Assuming that the output variables are the relative 
displacements between floors and the absolute accelerations, then: 
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3. SEISMIC SAFETY USING PROTECTION SYSTEMS 
 

3.1. Original and passive system 
 

One way to easily analyse the response characteristics of the system is by looking to the locations of 
the system’s poles in the Argand plane. This plot gives us information about the natural frequency and 
damping factors. The system’s poles can be evaluated by finding the roots of the transfer functions 
denominator (Eqn. 2.5) or by finding the eigenvalues of matrix A (Eqn. 2.6). The algebraic equation to 
solve if of fourth order: 
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where ‘p’ are the solutions of the equation. 
 
Assuming that the device attached to the system is a fluid viscous damper with a constant damping 
coefficient ‘cp’ then the system equations can be obtained by using the device force expression 
(Eqn. 2.4) with the passive device coefficient. Manipulating the equations it can be found that the 
result is equivalent to consider the system with a null input force (f=0) and a damping at the isolation 
system given by ‘ci+cp’. The evolution of the system’s poles as device’s damping is increased is 
presented in Fig. 3.1. The correspondent natural frequencies and damping ratios can be extracted as 
shown in the same figure. Analysing the results it is found that the evolution of the poles as the 
damping ‘cp’ increases conducts to: i) larger damping ratios for mode 2 reaching the maximum 
damping when the poles achieve the real axis; ii) an increase in damping for the first mode until 
ξp=77,2 % (ξisol=ξi+ξp=83,6) and thus cp=47 kN s/m, which decreases thereafter. The original system’s 
modal characteristics (for ξisol=ξi=6,4 %) are: f1=0,93 Hz, ξ1=5,3 %; f2=4,82 Hz, ξ2=18,1 %. With the 
passive damper at ξp=77,2 % are: f1 =1,41 Hz, ξ1=67,7 %; f2=3,15 Hz, ξ2=117 %. 
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Figure 3.1. Left: Root locus for the system employing a passive device. Starts at original system’s poles for an 

isolator damping ξisol=ξi=6,4 %. Right: Argand plane pole’s representation: frequencies (damped and undamped) 
and damping factor. 
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Fig. 3.2 shows a comparison for three distinct cases in terms of magnitude curves of the transfer 
functions: original system; and with two passive cases. The position of the poles in the Argand plane is 
also shown. It is evident the influence of damping in the system’s response. From this preliminary 
analysis it can be seen that a higher damping is needed for frequencies around the resonant frequency 
but smaller values are needed beyond the corner frequency in order to improve the isolation of higher 
frequencies namely on the relative displacement (inter-storey drift) and acceleration curves. To 
achieve these capabilities a variable damping device with an appropriate control law to change the 
damping coefficient in real time would be desired. 
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Figure 3.2. Left: Pole-zero map. Right: Bode diagram (magnitude) of the original 2DOF system ξisol=ξi=6,4 % 
and with two passive cases (ξisol=45,0 % and ξisol=83,6 % with ξisol= ξi=+ ξp), in terms of relative displacements 

between floors (Xig and Xsi) and absolute accelerations (Ai and As) relative to the input action (Ag). 
 
3.2. Active Systems 
 

On the other hand if an active device is attached to the system to improve its performance, a controller 
is needed to implement the control law obtained accordingly to a pre-established control strategy. In 
this work two different strategies are proposed to synthesize the controllers: acceleration feedback, 
also called ‘sky-hook’ (SH) damper, and the Linear Quadratic Regulator (LQR). Both of these 
controllers are also used in conjunction with the semi-active force feedback control. The generic 
control loop for the active system is presented in Fig. 3.3. For the purpose of this study it was assumed 
that the active device is an ideal sub-system, i.e. a transfer function with unitary gain in the frequency 
range of interest. So, ‘f’ is equal to ‘fd’. 
 

  

Figure 3.3. Control loop for the system employing an active device: with acceleration feedback (left); and 
optimal controller (right). 

 
The sky-hook damper is described by Preumont (2002). The goal of this control strategy is to decrease 
the resonance peak without loosing the isolation characteristics. This is made by using the acceleration 



feedback path with an integral compensator so that the input control force is proportional to the 
absolute velocity. The control law is given by: 
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where ‘g’ is the controller gain. Substituting Eqn. 3.2 in Eqn. 2.5 the transfer functions of the closed 
loop system are obtained: 
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The system’s poles can be evaluated by finding the roots of the transfer functions denominator. The 
algebraic equation to solve is identical to Eqn. 3.1 but with ‘ci+g’ instead of ‘ci’. The root locus is 
similar to the one found in Fig. 3.1. The gain value that dampens more the system poles is 
g=47 kN s/m. This value is identical to the coefficient found for the passive system but the advantage 
here is that the gain doesn’t affect the system zeros (numerator of the transfer functions) and thus 
maintains the isolation characteristics at higher frequencies. The poles are then in the same location of 
the passive system’s poles. However, the relative displacements of the base are increased in the lower 
frequencies range (see Fig. 3.4). 
 

As mentioned previously an optimal controller was also synthesised for the purpose of this study. 
Assuming that the input seismic action ‘gx&& ’ is a white noise excitation with zero mean and intensity 

(variance) ‘Ixg’, the LQR problem was formulated. Since the system is controllable, the goal is to find 
the control action ‘f’ for the system described by Eqn. 2.6 that minimizes a performance index that 
weights a generic output ‘yg’ and the input control force ‘f’ (Dyke, 1996): 
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where ‘Qg’ is a diagonal matrix that weights the correspondent output, and ‘r’ weights the control 
action. The solution is given by the following constant gain linear state feedback: 
 

 rPBKKf T /with, yy =⋅−= z  (3.5) 
 

where ‘Ky’ is the constant and ‘P’ is the solution of the algebraic Riccati equation; Dyke (1996). The 
closed loop system is then given by: 
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The LQR problem assumes that all states (relative displacement and relative velocity) are available at 
all time instants. However, in most practical situations the measurement of the states is not always 
feasible, can be complex or even very expensive. In such cases, if the system is observable the states 
can be estimated from a model of the system along with the output and input measurements – observer 
design; Preumont (2002). This analysis is focused on the system’s performance hence the observer 
design was not taken into account. With the presented formulation a preliminary analysis was made in 
order to identify the weights that are more beneficial for the system’s response. It was found that the 
best way to reduce the resonance peaks without compromising the higher frequency decay is mainly 
by weighing the inter-storey drift ‘xsi’ or the acceleration of the second floor ‘sx&& ’ having the control 

force weight ‘r’ fixed. If each of those weights are fixed then the increase of the control force weight 
‘ r’ conducts to the inverse evolution verified when weighting the responses. The values chosen to 
synthesize the optimal controller were: base mass acceleration weight qai=0,05; structure’s mass 
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acceleration weight qas=0,3; and force weight r=10-10. As with the sky-hook damper the active optimal 
controlled system amplifies the relative displacements in the lower frequency range although good 
performances are found on to other variables (Fig. 3.4). 
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Figure 3.4. Left: Pole-zero map. Right: Bode diagram (magnitude) of the original 2DOF system ξisol=ξi=6,4 % 
and employing a passive device (ξisol=83,6 % with ξisol= ξi=+ ξp), an active sky-hook damper and an active LQR 
controller. Results in terms of relative displacements between floors (Xig and Xsi) and absolute accelerations (Ai 

and As) relative to the input action (Ag). 
 
3.3. Semi-Active Systems 
 

This section describes the semi-active control strategies used in this study. It is assumed that the semi-
active device has an ideal transfer function and the damping coefficient ‘cv’ can be changed between 
cmin=3 kN s/m, corresponding to ξv=5 % of additional damping (to sum with ξi) and cmax=47 kN s/m, 
corresponding to ξv=77,2 % of additional damping. Two strategies were adopted: Bang-bang control; 
and force feedback control. The first strategy only needs the system’s responses to define the best 
damping coefficient. The control loop is represented in Fig. 3.5. 
 

  

Figure 3.5. Bang-bang semi-active control loop (left); force feedback semi-active control loop (right). 
 

This control strategy is based on the Lyapunov stability theory. The Lyapunov function chosen 
represents the total vibratory energy in the structure (kinetic plus potential energy), and thus the 
algorithm that results is called Decentralized Bang-Bang control (DBB); Jansen and Dyke (2000). 
The control law that makes the Lyapunov function as large and negative as possible is given by: 
 

 [ ] [ ] maxvminigimax
T

g1,2rgmaxv with,HG)I(H cccxxcfxxcc ≤≤⋅=⋅⋅⋅+−= &&&&  (3.7) 
 

where H[⋅] is the Heaviside step function. 
 



The second strategy needs the path from the controller, designed for the active devices, which 
determines the desired control force ‘fd’. This one in conjunction with the path of the force developed 
by the device ‘f’ are feedthrough to the SA algorithm which determines the best damping coefficient to 
input in the SA device. The control loop is also shown in Fig. 3.5. With this control strategy the 
damping coefficient will be chosen so that the device’s force follows the desired one evaluated by the 
controller. However, according to the nature of the device, the algorithms assume that is only possible 
to oppose force (energy dissipation), and thus the damping coefficient will be changed only when the 
desired force and damper force have the same sign. The controllers used in the loop are the ones 
synthesised in the previous subsection. In what concerns the algorithms two types can be found: on-off 
and continuous control laws. 
 
The variable damping (VD) control law consists in changing the damper coefficient according to the 
desired force using the device’s mathematical model and taking into account the device’s physical 
limits. This algorithm was used by Sadek and Mohraz (1998) in their studies: 
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Another semi-active control strategy consists in defining a clipping algorithm that tries to make the 
semi-active device to replicate the desired force resulting from the controller. The clipped continuous 
control (CCC) consists in defining a proportional gain ‘gp’ applied to the difference between absolute 
forces. This gain should be selected according to the control objectives; Preumont (2002). The semi-
active control law is given by: 
 

 [ ] maxvminddpv with,)(H|)||(| cccfffffgc ≤≤⋅−⋅−=  (3.9) 
 

If the proportional gain is very large the control algorithm becomes an on-off algorithm which is 
described as the clipped on-off (COO) algorithm. When used in conjunction with an optimal 
controller it is called clipped optimal control algorithm; Dyke (1996). The control law is simplified to: 
 

 [ ] maxvmindmaxv with,)(H cccfffcc ≤≤⋅−⋅=  (3.10) 
 

Yoshida and Dyke (2004) refer that in certain situations the COO algorithm lead to high local 
accelerations. These authors proposed a modified clipped on-off algorithm (MCOO) consisting in 
continuously changing the control variable (damping coefficient in this case) by applying a 
proportional gain ‘cmax/fmax’ on the desired force. This semi-active control law is given by: 
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4. NUMERICAL SIMULATIONS 
 

The semi-active fluid damper capabilities were evaluated and compared with the passive and the 
active devices in the 2DOF system described. The different control algorithms described were used. 
For this purpose it was considered that all states and variables are available for measurement. In terms 
of seismic actions, it is well known that earthquakes are characterized as non-stationary stochastic 
processes whose amplitude and frequency content change during its occurrence. On the other hand, the 
seismic action is also dependent on several factors like the generation and propagation effects and the 
local effects, which determine its amplitude and frequency content; Carvalho (2007). In the simulation 
studies two different input actions were considered to analyse the system’s performance. The input 
actions are artificial accelerograms generated using the extreme response spectrums provided in the 
Eurocode 8 for Portugal, for the two types of seismic actions, in zone 1. The soil type D was 
considered and the importance factors of the structures were set to 1 (importance class II). The two 



input actions generated for the simulations are: 1) a type 1 seismic action: EC8DNA11DIIacel; 2) type 
2 seismic action: EC8DNA21DIIacel. The accelerograms and the spectrums are presented in Fig. 4.1. 
As shown in the figure, type 1 input action has a longer duration and is richer in the lower frequencies. 
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Figure 4.1. Input actions considered in the numerical simulations. Left: type 1 seismic action, 

EC8DNA11DIIacel. Middle: type 2 seismic action, EC8DNA21DIIacel. Right: Both actions’ spectrums. 
 
Simulations were made using the MATLAB/Simulink environment. The system’s performance was 
evaluated in terms of peak values and RMS values of the whole output time signal considering those 
two inputs. The ratios showing the percent reduction compared to the original structure’s values are 
also presented in brackets. Table 4.1 shows the results of the evaluation criterion indices for the 
various system’s configurations: i) open-loop system (original, no control); ii) Passive (structure with 
a passive device at maximum damping); iii) active system (SH and LQR); iii) semi-active systems 
(DBB, and the combinations of controllers ‘SH’ and ‘LQR’ with the algorithms ‘VD’, ‘CCC’, ‘COO’ 
and ‘MCOO’). The algorithms ‘CCC’ and ‘MCOO’ considered the gain which attained the best 
response, as indicated next to the algorithm designation in Table 4.1 (‘gp’ and ‘cvmax/fmax’ respectively). 
 
Table 4.1. System’s performance results in terms of evaluation criterion indices. 
Input Action EC8DNA11DIIacel (type 1 action) EC8DNA11DIIacel (type 2 action) 
Evaluat. Indices 

absolute values 
(percent reduction) 

rms xig 

(mm) 
& % 

peak xig 

(mm) 
& % 

rms xsi 

(mm) 
& % 

peak xsi 

(mm) 
& % 

irmsx&&  

(m/s2) 
& % 

ipeakx&&
(m/s2) 
& % 

srmsx&&  

(m/s2) 
& % 

speakx&&

(m/s2) 
& % 

rms xig 

(mm) 
& % 

peak xig 

(mm) 
& % 

rms xsi 

(mm) 
& % 

peak xsi 

(mm) 
& % 

irmsx&&  

(m/s2) 
& % 

ipeakx&&

(m/s2) 
& % 

srmsx&&  

(m/s2) 
& % 

speakx&&

(m/s2) 
& % 

Original System 57,3 164,0 15,6 44,8 1,96 5,52 2,48 7,13 22,2 58,9 6,1 16,2 0,80 2,34 0,97 2,58 
13,6 39,2 7,4 22,6 0,98 3,28 1,18 3,60 5,6 17,5 3,8 13,7 0,74 2,44 0,61 2,20 

Passive 
(76) (76) (52) (50) (50) (41) (52) (49) (75) (70) (37) (15) (7) (-4) (37) (15) 
31,4 95,2 3,8 10,9 0,46 1,46 0,60 1,73 13,0 31,2 1,6 5,0 0,20 0,63 0,26 0,79 SH 
(45) (42) (76) (76) (76) (74) (76) (76) (41) (47) (73) (69) (75) (73) (73) (69) 
43,1 130,1 2,6 7,3 0,36 1,08 0,41 1,17 18,0 39,9 1,2 4,2 0,20 0,64 0,19 0,68 

LQR 
(25) (21) (83) (84) (82) (81) (83) (84) (19) (32) (81) (74) (75) (73) (81) (74) 
17,6 53,3 6,7 24,5 1,35 13,28 1,07 3,90 8,0 23,8 3,1 12,8 0,71 8,17 0,49 2,05 DBB 
(69) (68) (57) (45) (31) (-140) (57) (45) (64) (60) (49) (21) (11) (-249) (49) (21) 
20,6 60,9 6,6 22,4 0,96 3,96 1,06 3,57 8,8 25,5 2,9 8,1 0,56 2,31 0,46 1,30 SH VD 
(64) (63) (58) (50) (51) (28) (58) (50) (60) (57) (53) (50) (30) (1) (53) (50) 
20,4 59,1 6,6 19,8 2,12 16,03 1,05 3,18 8,7 25,0 2,9 10,9 1,01 6,76 0,46 1,75 

SH COO 
(64) (64) (58) (56) (-8) (-190) (58) (55) (61) (58) (53) (33) (-27) (-189) (52) (32) 
26,3 76,1 7,5 21,4 0,98 3,46 1,20 3,41 12,0 39,8 3,5 10,5 0,52 2,10 0,55 1,67 

SH CCC 2,5 
(54) (54) (52) (52) (50) (37) (52) (52) (46) (32) (43) (35) (34) (10) (43) (35) 
23,8 67,1 7,2 20,6 0,95 3,91 1,14 3,29 11,6 36,7 3,4 10,6 0,52 2,23 0,54 1,69 SH MCOO 

2,236 (58) (59) (54) (54) (52) (29) (54) (54) (48) (38) (44) (35) (34) (5) (44) (35) 
31,0 96,3 7,7 26,7 1,07 4,57 1,22 4,26 12,1 39,3 3,1 11,3 0,53 1,90 0,49 1,80 LQR VD 
(46) (41) (51) (40) (45) (17) (51) (40) (45) (33) (49) (30) (33) (19) (49) (30) 
24,5 70,4 7,1 22,5 2,76 13,77 1,14 3,60 10,0 31,7 3,1 12,2 1,23 7,24 0,49 1,95 

LQR COO 
(57) (57) (54) (50) (-41) (-149) (54) (49) (55) (46) (50) (25) (-54) (-209) (50) (24) 
41,7 115,2 11,1 32,1 1,44 4,29 1,77 5,10 16,4 52,1 4,6 13,9 0,64 2,31 0,73 2,22 

LQR CCC 2 
(27) (30) (29) (28) (27) (22) (29) (28) (26) (12) (25) (14) (20) (1) (25) (14) 
40,4 113,6 10,8 31,8 1,40 4,27 1,72 5,06 16,5 52,2 4,6 14,0 0,64 2,31 0,73 2,22 LQR MCOO 

1,423 (30) (31) (31) (29) (29) (23) (31) (29) (25) (11) (24) (14) (19) (1) (24) (14) 

 
The results show that in general all the solutions can reduce both relative displacements and 
accelerations although the SA devices working with on-off algorithms (DBB and COO) lead to higher 
accelerations at the base mass. The passive device is the best at reducing the relative displacement of 
the base mass but at the expense of penalising the other variables, especially when the input is a type 2 
action. On the other hand, with the active hybrid system (base isolation plus active devices) the base 
relative displacements are slightly superior to the ones for the passive device, but in terms of the 
remaining variables indices the results are the best ones. It is found that the SH is better then LQR in 



terms of base relative displacements but at the expense of loosing some performance on the remaining 
variables indices. When using a semi-active hybrid system (base isolation plus semi-active device), the 
best solution is the SH controller with VD algorithm. This configuration can reduce both accelerations 
and inter-storey drifts, always better than the passive case, but at the coast of penalising a little bit the 
relative displacement of the base mass. However this was the cost assumed by reducing the 
accelerations and inter-storey drifts. The results show also that this configuration is manly effective 
with type 2 action as input, having a similar performance to the passive case when a type 1 action is 
considered. The LQR VD shows also better performance than the passive case but only when a type 2 
action is considered. Another aspect to mention (not shown) is that COO algorithms, CCC with higher 
gains and MCOO with lower gains have always some chattering in the acceleration responses. Even 
choosing an optimized gain the performance of these algorithms is inferior to the SH VD. 
 

 
5. CONCLUSIONS 
 

An alternative solution to the usage of passive or active systems to reduce earthquake induced 
vibrations has been presented. The main idea consists in changing the damping of a passive device in 
real time. In order to reduce both inter-storey drifts and accelerations this concept was used in 
conjunction with a base isolation system. Several control strategies were formulated for use with this 
type of devices. Numerical simulations of a 2DOF dynamic model were performed with the SA 
control strategies and also with the passive and active devices. The results showed that SA hybrid 
systems can reduce both inter-storey drift and accelerations for the two input actions considered. The 
SH VD (sky-hook with variable damping) was found to be the best SA control strategy. The LQR 
counterpart showed better performance than the passive only when a type 2 action is considered. 
Although active devices present better performance than SA ones, they are always more expensive and 
need a huge power supply to operate it. In summary, the only semi-active system that performs better 
than the passive considering the two inputs is the SH VD. So, further studies should be conducted 
considering other accelerograms for other zones and other soil types. 
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