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SUMMARY: 
This  paper  discusses  the  effect  that  the  ground  motion  and  vibrational  system  characteristics  has  on  the 
probability distributions of the residual displacement after earthquake ground motions, by considering the time 
history of plastic deformations as a random process. In this paper, a hypothesis of  “random walk” is used, in 
which the magnitude of every single occurrence of plastic deformation is constant and its direction random.  
Through response analysis, it  is  shown that  this theory is able to explain the probability distribution of the  
residual displacement in isotropic hardening bilinear SDOF systems. Since this hypothesis is not able to model  
the behavior of kinematic hardening systems where the secondary stiffness deviates from zero. The hypothesis is  
modified so that the plastic energy input at each occurrence of yielding is constant. With this modification, good  
estimates  of  the  standard  deviation  of  the  residual  displacements  for  kinematic  hardening  systems  can  be 
obtained.
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1. INTRODUCTION

The final aim of this research is to establish a method to estimate the residual  displacement of a  
building after an earthquake. The post-earthquake residual displacement is considered as one of the 
possible indexes for representing the repairability of a damaged building, and has been used to propose 
several structural design scheme. (Christpoulos et al.(2003), Iwata et al. (2005),  etc.) However, the 
idea  of  repairability  design  is  not  popular  at  this  moment,  because  the  value  of  the  residual  
displacement has a large dispersion and is difficult to estimate quantitatively in a building after an  
earthquake.

Much effort  has been made in order to quantify residual  displacement.   MacRae and Kawashima  
(1997)  and Kawashima et al. (1998) have tried to evaluate the residual displacement of a bilinear 
single-degree-of-freedom(SDOF)  system through a  residual  displacement  spectrum.  This  spectrum 
represents the relationship between the natural frequency of the system and the residual displacement 
ratio which is a ratio of the residual displacement to the maximum displacement during an earthquake.  
They concluded that the spectrum is mostly affected by the secondary stiffness of the system, and as a 
result proposed a residual displacement design spectrum as a function of this parameter.  

Akiyama and Takahashi (1996) have investigated the residual displacement of multi-story bilinear 
systems through response analysis, and proposed an empirical formula to evaluate the maximum and 
average residual  displacement in terms of the secondary stiffness.  This study also claims that  the  
secondary  stiffness  has  a  significant  effect  on  the  residual  displacement.  However,  the  residual 
displacement obtained from the response analysis has a large dispersion and further study is required 
to improve the precision of the formula.

Ogawa et al. (1996) have proposed a model in which the seismic input energy of an SDOF system is  
divided into its positive and negative loading directions. This model is able to quantitatively explain  



the effect of the secondary stiffness and can be used to estimate the residual displacement. However,  
they mention that the accuracy may be affected by system or the input ground motion characteristics.

In recent years, many other researchers have conducted numerical studies on the prediction of the  
residual displacement. Generally speaking the results state that the residual displacement has a large  
dispersion and is greatly affected by the secondary stiffness, but are unclear about the effect of other 
parameters other than the secondary stiffness. Thus, further study is required to better estimate the  
residual displacement.

This paper introduces a theoretical probability distribution for distribution of residual displacements 
based on the hypothesis of a random walk where at each occurrence of yielding(walk) the plastic  
deformation is constant.  Though this hypothesis is quite simple, it can explain the dynamic response  
analysis results of isotropic hardening bilinear SDOF system. It will be shown that this hypothesis can  
also be applied to a system with a non-zero secondary stiffness, by assuming that at each occurrence of 
yielding the plastic energy input is constant.

2. THEORETICAL PDF AND DEVIATION OF RESIDUAL DISPLACEMENT

2.1 Hysteretic characteristics

This paper discusses bilinear systems with isotropic and kinematic hardening, as shown in Fig. 1.

(a) Isotropic hardening                                   (b) Kinematic hardening         

Figure 1. Hysteretic characteristics

In this paper, the plastic deformation at the  i-th occurrence of yielding is represented as  d i .  The 
residual displacement d r  and the cumulative plastic displacement d t  are represented as,

d r=∑
i=1

n

d i ,       d t=∑
i=1

n

∣d i∣ (1)

The normalized values of the plastic deformation at each occurrence of yielding, d i ,  and the residual 
displacement, d r , are defined as,

d i=
d i
d t

,       d r=
d r
dt

(2)

Fig. 2(a) shows a conceptual diagram of time histories of the residual displacement and the cumulative  
plastic displacement. The cumulative plastic displacement increases monotonically, while the residual  
displacement increases and decreases according to the time-history characteristics of the input ground 



motions.

(a) Example of  response analysis result (b) Random walk hypothesis with 
   constant plastic displacement

Figure 2. Time history of cumulative and residual plastic displacement

2.2 “Random walk” hypothesis with constant plastic displacement

To model the behavior of the time history of the residual displacement, it is assumed to be a “random 
walk”, in which the magnitude of every single plastic displacement is constant and its direction is  
completely random. Under this assumption, as shown in Fig. 2(b), the normalized plastic deformation 
at the i-th occurrence of yielding, d i , should be either +1/n  or −1/n , each with a 1/2 probability of 
occurring.  Here  n represents  the  number  of  occurrences  of  yielding  during  an  earthquake.  This 
assumption leads to  an estimation that  the probability distribution of the  post-earthquake residual  
displacement, d r , is a binomial distribution with a standard deviation of 1/√n .

2.3 “Random walk” hypothesis with constant energy input

In the case of kinematic hardening,  the positive and negative yielding loads are different  and the 
positive  and negative plastic  displacements  at  each occurrence of  yielding may not  be similar  in 
magnitude. In this section, instead of assuming that the magnitude of the plastic displacement is the  
same, the plastic energy input is. The direction of the deformation is still assumed to be the same. Fig.  
3 explains the detailed behavior of the plastic deformation at the i-th occurrence of yielding under this 
assumption. The system is assumed to have an elastic energy E e , i  before the i-th plastic deformation, 
as shown in Fig.  3(a).  In Fig. 3(b), from an energy input of Ep1 , the system plastically deforms to 
absorb the energy. As a result, the residual displacement at this occurrence of yielding is  considered 
d r , i  as shown in Fig. 3(c), and the elastic energy E e , i +1  will be used in the next yielding step. 

Figure 3. Assumed behavior during a single plastic deformation

In contrast to the random walk hypothesis with constant plastic displacement, the derivation of an  
exact closed-form formula to estimate the standard deviation of the residual displacement under this 
hypothesis is extremely difficult. However, it is possible to obtain the probability distribution and its  



standard deviation numerically through a Monte Carlo simulation using the procedure shown in Fig. 4.
 

Figure 4. Procedure to compute the residual displacement under the hypothesis of constant energy input

3. RESPONSE ANALYSIS METHOD

3.1 Analysis model

A bilinear SDOF model with isotropic and kinematic hardening, as shown in Figure 1(a) and (b), are 
used in the response analysis. The parameters of the model are the natural period, the yielding load, 
and the secondary stiffness ratio α . The natural period is varied from 0.1 s to 4 s at a 0.02 s interval  
by changing the initial stiffness. The yielding load, Qy , is determined as Qy=DsQe ,  where Qe  is 
the maximum restoring force of the elastic model, and for Ds , values of 0.2, 0.4, 0.6, 0.8 are used. 
For the secondary stiffness ratio α , 7 values (0, ±0.02 , ±0.05 , ±0.1 ) are used.

3.2 Input ground motions

In this paper,  ground motions of the 2011 Tohoku Earthquake obtained from KiK-net X) are used. 
From various locations, 166 records which have a maximum acceleration larger than 20 gal have been 
selected. These have been selected irrespective of the measured direction.

4. RESPONSE ANALYSIS RESULTS

4.1 Standard deviation of residual displacement of isotropic bilinear system

Figure 5(a) shows the relationship between the number of occurrences of yielding, n, and the standard 
deviation of the normalized displacement,  σ [d r] ,  for the isotropic hardening bilinear system. The 
value of σ [d r]  corresponding to each n has been calculated as the standard deviation of an ensemble 
of  d r  , which all yield n times, selected from the set of the response analysis results obtained with 

various parameters and ground motions. Different line types represent different α .  

Figure 5(b) shows the accuracy of the hypothesis. The y-axis is σ [d r]×√n . When this value equals 

1.0, the random walk hypothesis agrees with the analysis result.

As shown in Figure  5(a) and  5(b), the curves of the analytical results with various  α 's are almost 
identical. This means that the effect of  α  on the accuracy of the hypothesis is negligible. 



 (a)  Standard deviation of the residual displacement                (b) Accuracy of the estimate under the hypothesis

Figure 5. Analysis results with isotropic hardening model

4.2 Standard deviation of the residual displacement of a kinematic bilinear system

Fig.  6(a) shows the relationship between the number of occurrences of yielding,  n, and the standard 
deviation of normalized displacement,  σ [d r] ,  and  6(b) the estimation accuracy,  σ [d r]×√n ,  with 

respect to n.

 
(a)  Standard deviation of the residual displacement               (b) Accuracy of the estimate under the hypothesis

Figure 6. Analysis results with kinematic hardening model

σ [d r]  is strongly affected by α , and the value of  σ [d r]×√n  is deviates from 1.0 as  α  differs 

from 0.0. This means that the random walk hypothesis with constant plastic displacement does not 
agree with the analysis results for the bilinear model with kinematic hardening. 

4.3 Validity of the random walk hypothesis with constant energy input.

Here, the Monte Carlo simulations under the hypothesis with constant energy input and the response 
analysis results are compared. 

From a single vibrational system and ground motion record pair, the response analysis computes one 
value  of  d r .  On the  contorary,  the  Monte  Carlo  simulation  computes  the  theoretical probability 
distribution  of  the  residual  displacement,  d r , simulated ,  and  therefore  its  standard  deviation, 
σ [d r ,simulated ] . Theoretically, the value d r /σ [d r ,simulated ]  should follow a standard normal distribution, 

so its standard deviation,  σ [d r /σ[d r ,simulated]] , should be 1.0.  Therefore, if  σ [d r /σ[d r ,simulated]]  is 
close to 1.0, the response analysis results follow the hypothesis.

 



      
     

Figure 7. Accuracy of estimation by Monte Carlo simulation in case of kinematic hardening model

Fig. 7 shows the standard deviation of d r /σ[dr ,simulated]  under various α , with respect to the number 
of yielding occurrences,  n.   The curve of  α=0  in Fig.  7 is identical to the corresponding one in 
Fig.6(b), since σ [d r ,simulated]= √n  for this case.

Compared to Fig.6(b), all the curves in Fig.7 are much closer to the curve with α=0 . This means that 
the hypothesis can eliminate the effect of α . As a result, they are also closer to 1.0,  which means the 
hypothesis can give better estimates compared to Fig.6(b). For the case of α=0 , these two hypothesis 
are completely the same and therefore the lines with α=0  in Fig.6(b) and Fig.7 are the same. The 
precision in the case of α=0  is affected by the vibrational system and ground motion characteristics, 
as discussed in Iyama (2012), and larger than 1.0 especially where n is larger in this study. However, 
in many cases, the value of  n is less than 10 and Fig.7 shows that within this range the estimate 
accuracy of the simulation is less than 1.5 irrespective of α . 

5. CONCLUSION

In  this  paper,  the  occurrences  of  plastic  deformation  is  considered  as  a  simple  one  dimensional 
“random walk” problem, where the amount of plastic deformation at each step is constant and its 
direction  random.  This  assumption  theoretically  leads  to  a  relationship  stating  that  the  standard  
deviation of the probabilistic distribution of residual  deformations is  inversely proportional  to the  
square  root  of  the  number  of  occurrences  of  yielding.  This  analytical  relationship  is  capable  of  
explaining the trend observed in the numerical results from dynamic response analysis of isotropic  
hardening bilinear systems. However, for kinematic hardening systems, the standard deviation of the 
distribution of residual deformations estimated from this equation has large errors when the post-yield 
stiffness differs from zero, because the assumption does not consider its effect.

In order to incorporate the effect of the post-yield stiffness, the energy absorbed from every single  
plastic  deformation  is  assumed  constant.  With  this  further  assumption,  an  analytical  relationship 
between the standard deviation of the residual displacement distribution and the number of yielding 
occurrences can no longer be obtained. Therefore, a Monte Carlo simulation is used to estimate this 
relationship numerically. Comparison between the results from the Monte Carlo simulations and the 
dynamic response analysis show that the additional assumption is able to greatly improve the accuracy 
of the estimation. 
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