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SUMMARY: 
This paper discusses various effects of horizontal diaphragm flexibility on dynamic properties and seismic 
responses of timber structure.  Equations of motion of a building with multiple discretized diaphragm elements 
are derived by defining reduced degrees of freedom.  A method to predict seismic responses is proposed by 
using the reduced degrees of freedom, and example structures are used to demonstrate its accuracy and 
advantages.  Modification of the method to rationalize and improve the conventional method is also discussed, 
by indicating good accuracy except when horizontal diaphragm is very flexible and stiffness eccentricity is large.    
Finally, Application of the method to multi-span structure more than 3-span is also demonstrated. 
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1. INTRODUCTION 
All the elements resisting horizontal forces should be connected with stiff and strong floor diaphragm 
in terms of seismic resistance.  Additionally, rigid floor is necessary to analyze seismic behavior of 
structure using simplified model such as multi-mass model with shear spring.  Therefore, seismic 
design codes in many countries are based on “rigid floor assumption”. 

 
However, floor diaphragm of Japanese timber structures may not be stiff enough to satisfy rigid floor 
assumption.  The relation between floor stiffness and dynamic properties of system has been studied 
through many experiments and analyses of 3-dimensional frame model.  Kawai (2000) studied 
applicability of equivalent linearization method for evaluating seismic response of timber structure 
with plywood shear walls and flexible floor diaphragm.  The study showed that the prediction had 
good accuracy except when stiffness eccentricity was large because the method considered equally 
distributed inertial force.  Conventional methods do not seem to have enough accuracy because 
theoretical approach is lacked.  Therefore, evaluation method of dynamic properties considering floor 
flexibility is required. 
 
In Japan, floor diaphragm usually consists of timber panels fastened to floor frame with nails.  Since 
connections of timber structure are like pin joints, floor frame deforms keeping parallelogram.  
Considering above behavior of timber structure, the authors have already presented dynamics-based 
approach for 1-span model, which is able to consider exact distribution of inertial force and 
displacement mode subjected to uni-directional earthquake (Yamazaki et al. 2011).  The theory gives 
dynamic properties using some familiar properties of structure. 
 
The objective of this research is to extend the theory to 2-span model and present reduced expression 
for timber structure with flexible floor diaphragm.  How to determine criteria for “rigid floor” is also 
discussed using key parameters derived from equation of motion.  Finally, proposed method is 
applied to multi-span structure more than 3-span, and its validity and advantage are demonstrated. 



2. EQUATION OF MOTION 
 
2.1. Considered Model 
 
As shown in Figure 1, 2-span single story model with multiple discretized diaphragm elements 
subjected to x-directional input motion is considered.  Three springs and dashpots in each direction 
represent frames or walls.  Floor diaphragm is divided to four areas ; Area11, Area12, Are21 and 
Are22, respectively. 
 
If each area acts like shear panel, displacement mode of structure is defined as shown in Figure 2.  
Components of rigid body which does not includes shear deformation of floor diaphragm are ux and θ.  
These are displacement of center of mass (c.m.) in x-direction and rotation around c.m., respectively.  
Other components are attributed to shear deformation of floor diaphragm ; γx1, γx2, γy1 and γy2, 
respectively.  These are selected in condition that γx1 + γx2 - γy1 - γy2 equals to zero, which means shear 
forces do not rotate floor diaphragm. 
 
If bilaterally symmetric structure is considered, γy1 = γy2 (= γy) is derived.  Moreover, ux, (θ + γx1), (θ + 
γx2) and (θ - γy) are dominant parameters to express motion of structure.  As a result, it is found that 
the structure can be dealt with 4-degree of freedom system. 
 
Besides, beams are likely to affect stiffness element of floor diaphragm.  For example, if γx1 does not 
equal to γx2, beams must be bent around their weak axes.  Aoki et al. (2002) have reported that 
bending stiffness of beams is likely to affect total stiffness of floor diaphragm especially when floor 
shear stiffness is low.  Owing to this, rotational springs are added in boundary of each area as shown 
in Figure 3, which represent bending of beams and output moment proportional to (γx1 – γx2). 
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2.2. Equilibrium of Force in An Area 
 
Figure 4 shows an example of equilibrium of force in Area11.  1) Total force and moment of stiffness 
elements in Area11, 2) Inertial force, 3) Shear forces transmitted from adjacent panels and 4) Bending 
moment of beams are taken into account.  Coordinate of stiffness element and mass element in Area 
ij is defined in its local coordinate system as shown in Figure 5, and the following parameters are 
calculated. 
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Where, ( ) ( )l

yij
l

xij kk , = stiffness of l-th element in x- and y- direction, respectively.  ( ) ( )l
ij

l
ij yx , = Coordinate of 
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l

mij yx , = Coordinate of l-th mass element.  
Eqn. 2.1a-c show total stiffness, rotational stiffness and stiffness eccentricity in Area ij, respectively. 
 
When the model is subjected to ground acceleration gu&& , Equilibrium of force in Area ij are described 
as follows. 
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Where, the following parameters are added. 
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These satisfy ( ) ( )y

ij
x
ijij KKK θθθ +=  and ( ) ( )yx III 000 += .  The right member of Eqn. 2.5 is satisfied only 

when mass is equally distributed.  G, V0 = shear modulus and volume when floor diaphragm of each 
area is assumed to be elastic plate.  bKθ = Rotational stiffness of spring located in connection between 

γx1 - γx2 

Figure 3: Rotational springs representing bending of beams around weak axis 
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lower areas (i.e. Area11 and Area12) and upper areas (i.e. Area21 and Area22).  Qx1, Qy1 = shear 
forces transmitted from adjacent panels, which are not shown in equilibrium of total area because 
these are internal forces of floor diaphragm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.3. Equilibrium of Force in Total Area 
 
By considering equilibrium of force in all areas and setting origin in center of mass, equation of 
motion is obtained as follows. 
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Where, we use m = 4m0 and V = 4V0, and the following parameters of global coordinate system are 
also defined. 
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In Eqn. 2.8-2.10, index “1” and “2” mean that the parameter is defined in “lower areas” and “upper 
areas”, respectively.  Hence, the following relations are satisfied. 
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These three parameters are commonly-used for structure with rigid diaphragm. 
 
2.4. Normalization of Equation of Motion 
 
In this section, parameters in equation of motion are normalized instead of physical parameters.  At 
first, the followings are defined. 
 

mK xx =ω  ,      IKθθω =  (2.12a,b) 
 
Where, ωx , ωθ = natural circular frequency of the structure assuming its rotation/translation is fixed, 
respectively.  In addition, the following coordinate conversions are conducted. 
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Where, rm = radius of gyration, I = moment of inertia.  The right member of Eqn. 2.13d is satisfied 
only when mass is equally distributed.  Using above parameters, Eqn. 2.6 is converted as follows. 
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Where, 
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ωγ and ωb means floor stiffness against shear and bending, respectively.  Since their units are the 
same as those of circular frequency, “ω” is used.  In the stiffness matrix (Eqn. 2.15d), stiffness of 
floor diaphragm is expressed in nondimensional parameters ; ωγ/ωθ for shear and ωγ/ωθ for bending, 
respectively. 
 
 
3. DETERMINATION OF PARAMETERS 
 
In this paper, we focus on the effects of not only floor flexibility but also stiffness eccentricity.  As 
shown in Figure 6, two types of model with different stiffness balance are considered.  These models 
have nearly the same eccentric ratio Rex which is used in Japanese Building Standard Law.  Rex means 
vulnerability to torsion, and it is calculated as follows. 
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As for design of timber houses in Japan, Rex must be lower than 0.3.  Rex of model 1 and model 2 are 
about 0.3. 
 
Another characteristic of this research is consideration of bending stiffness of floor diaphragm.  As 
mentioned by Aoki et al. (2002), the effect should not be neglected especially in the case of quite 
flexible floor diaphragm.  In this study, bending flexibility is simulated considering ideal rotational 
spring, and how to determine its stiffness is explained as follows. 
 
As shown in Figure 7, simple beam and rigid link system are considered.  When deflection of the 
two models are the same, we can obtain Kθb = 3EI / (2ly) .  Where, E = Young’s modulus of beam, I = 
moment of inertia of beam around weak axis.  However, we can not exactly evaluate I because wood 
panels are typically fastened to beams with nails.  Therefore, E = 8 kN/mm and ly = 3.64 m are 
assumed, and two cases of I ( = (240*1203/12)*3, (240*1203/12)*3*10 ) are considered.  The former 
means that there are three usual beams (Kθb = 342 kNm/rad), and the latter is ten times of it (Kθb = 
3420 kNm/rad).  These are described as “low bending stiffness” and “high bending stiffness”, 
respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P 

δ1

P

δ2

(a): (b):

ly ly δ1 = δ2

Figure 7: Procedure of determining stiffness of rotational spring 

Bending stiffness of beam
= EI 

Rotational stiffness = Kθb

Rigid link 

0.15 

0.
33

 

0.
33

 

0.
33

 

0.52 

0.33 

Figure 6: Balance of stiffness 
(a): Model 1 (b): Model 2

0.25

0.
33

 

0.
33

 

0.
33

 

0.62

0.13

(*) Total stiffness is required 
value of Japanese Building 
Standard Code. 



4. EVALUATION OF SEISMIC RESPONSE 
 
4.1. Procedure of Evaluation 
 
In this paper, two evaluation methods are used. 
 
a)  Spectrum Procedure 
It is assumed that pseudo acceleration spectrum Spa is constant and damping ratio of all modes are the 
same.  Using SRSS method, maximum deformation of inner frame max,xu , flexible side frame 

max,1xu , stiff side frame max,2xu  and orthogonal outer frame max,2yu  are calculated as follows. 
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Where, φi , βi = eigen vector and participation factor of i-th mode, respectively. 
 
Similarly, maximum acceleration of each frame is evaluated as follows. 
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In Eqn. 4.3, only 1st. mode is taken into account because of the reason described later. 
 
b)  Static Procedure  (Conventional Procedure) 
Generally, equally distributed lateral force is used for pushover analysis for 3-dimensional model even 
when floor diaphragm is not so stiff.  Maximum displacement by this method is calculated as 
follows. 
 

{ }1mku 1
smax,

−= paS  (4.4) 
 
m, k and {1} are shown in Eqn. 2.14.  This procedure assumes paxxx Suuu === max,2max,1max, &&&&&&  and 

0max,2 =yu&& . 
 
4.2. Results and Discussions 
 
In this section, results from two procedures are compared.  Spectrum method using SRSS method is 
likely to be accurate result, and accuracy of spectrum procedure considering only 1st. mode and static 
procedure are examined. 
 
Figure 8 shows distribution of maximum displacement and acceleration of model 1 (low bending 
stiffness), model 2 (low bending stiffness) and model 2 (high bending stiffness).  As for model 1, 
only “low bending stiffness” is examined because dynamic properties of model 1 are not so affected 
by bending stiffness.  ωγ/ωθ = 0.7, 1.5,∞  and Spa = 196 cm/s2 are considered. 
 
At first, it is found that the results of maximum displacement from spectrum procedure using SRSS 
method and 1st. mode are nearly the same.  For this reason, when we conduct pushover analysis, 
distribution of external force should be similar to modal shape of 1st. mode.  However, distribution 



shapes of acceleration from spectrum procedure (1st. mode) and static procedure are quite different.  
Therefore, the reliability of static procedure seems to be a little lacked.  Actually, the accuracy of 
static procedure is reduced in the case of model 1 while they are not so reduced in the case of model 2. 
 
Secondly, maximum displacement of various ωγ/ωθ is focused on.  When ωγ/ωθ is infinity, maximum 
displacement angle of flexible frame of all models are nearly less than 1/100rad.  However, the less 
ωγ/ωθ is, the larger maximum displacement become.  It is remarkable especially in the case of model 
1 and model 2 (low bending stiffness).  As we have pointed out in the previous research (2011), 

5.1/ ≥θγ ωω  seems to be reasonable criteria for rigid diaphragm, which means dynamic properties 
and seismic response are not so different from those of structures with infinitely rigid diaphragm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. APPLICATION TO MULTI-SPAN STRUCTURE 
 
5.1. Modification of Equation of Motion 
 
If inner frame is eccentric, we can not use Eqn. 2.6 and 2.13.  Therefore, modification of model and 
equation of motion is necessary.  As shown in Figure 9, let ply and (2－p) ly be the length of 
lower/upper areas in y-direction, respectively.   In the previous chapters, we assumed p = 1. 
 
Origin is set in the position as shown in Figure 9 instead of c.m..  As a result, ux is defined as 
displacement in origin.  Therefore, Eqn. 2.6 is modified as follows. 
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Figure 8: Evaluation of maximum seismic response using spectrum procedure and static procedure 
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Normalization of equation of motion like Section 2.4 is omitted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.2. Example Structure 
 
In this section, Eqn. 5.1 is applied to multi-span structure more than 3-span.  As shown in Figure 
10(a), the model of two spans in x-direction and four spans in y-direction are studied.  This is 
modeled on the specimen of traditional timber house tested by Shimizu et al. (2010).  Only mud 
walls are considered as stiffness element and floor stiffness is thought to be relatively low.  The 
stiffness is identified from other tests.  Natural period of the model is assumed to be 0.4 sec when the 
model has no stiffness eccentricity and floor diaphragm is rigid. 

 
5.3. Verification of Adequacy 
     
When the model is converted to reduced 2-span model, we can not determine where to locate inner 
frame.  Therefore, three cases (p = 0.67, 1, 1.33) are tried as shown in upper part of Figure 
10(b),(c),(d).  By doing so, natural period and modal shape of 1st. mode are evaluated.  These are 
compared with the results from eigen analysis of detailed frame model in lower part of Figure 
10(b),(c),(d).  It is found that the model of p = 0.67 shows good accuracy and its T1 is longest in all 
models. 
 
As a result, we can conclude that dynamic properties of multi-span structure can be estimated by 
calculating those of a few reduced 2-span models.  The model having longest T1 gives reasonable 
solution. 
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Figure 9: Generalized model (Inner frame is not located in the center) 
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6. CONCLUSIONS 
 
In this paper, reduced expression for timber structure with flexible floor diaphragm is presented.  The 
findings of this research are as follows. 
 
1)  Equations of motion of a building with multiple discretized diaphragm elements are derived by 

defining reduced degrees of freedom. 
2) In this model, not only shear stiffness of floor diaphragm but also bending stiffness of beams are 

taken into account.  If shear stiffness of floor diaphragm is quite low, bending stiffness may affect 
dynamic properties. 

3) Considering characteristics of typical timber houses, seismic response mainly derives from 1st. 
mode.  Therefore, if pushover analysis for 3-dimensional model is conducted, we should consider 
not equal distribution of external force, which is typically used, but distribution similar to 1st. 
modal shape. 

4) Proposed method is based on definition of 2-span structure.  However, it can be applied to 3-span 
structure or over. 

 
In this paper, linear structure is considered.  However, equivalent linearization method based on this 
approach is likely to be effective for non linear structure.  We will show the applicability in the 
future. 
 
 
REFERENCES  
 
Aoki, K., Tsuchimoto, T., and Ando, N. (2002), Effect of Shear Wall Configuration on Lateral Deformation of 

Conventional Japanese Timber Structures II, Journal of the Japan Wood Researh Society, 48:6, 439-448. 
Shimizu, H., Mukaibo, K., Horikawa, E., Tsuchimoto, T., Kawai, N., and Ohashi, Y. (2010), Study on Seismic 

Performance of Traditional Wooden Structure by Full Scale Shaking Table Tests, Journal of Structural and 
Construction Engineering, Architectural Institute of Japan, 75:657, 2001-2008. 

Kawai, N. (2000), Application of Equivalent Linear Response Method Considering Shear Deformation of 
Horizontal Frames, Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan, 
Architectural Institute of Japan, C-1:Structures III, 203-204. 

Yamazaki, Y., Kasai, K., and Sakata, H. (2011), A Basic Study on Dynamic Property and Seismic Response of 
Timber Structure with Flexible Floor and Uni-axial Stiffness Eccentricity, Journal of Structural and 
Construction Engineering, Architectural Institute of Japan, 76:663, 959-968. 

0

3640

7280

10920 Reduced

y 

x

2730 2730 

18
20

 
18

20
 

36
40

 
36

40
 

6 

4.5 

6 

1.5 

6 

8 8 8 

(mm) 

0

3640

7280

10920

0

3640

7280

10920

54
60

 
54

60
 

72
80

 
36

40
 

x

(a)  Detailed model (c)  Reduced model
(p = 1) 

(b)  Reduced model
(p = 0.67) 

y 
(m

m
) 

x

Detailed
Reduced

T1 = 0.475 secT1 = 0.489 sec 

36
40

 
72

80
 

x 

(d)  Reduced model
(p = 1.33) 

T1 = 0.431 secT1 = 0.488 sec

A
re

a1
1,

 
A

re
a1

2 
A

re
a2

1,
 

A
re

a2
2 

Figure 10: Estimation of modal shape and natural circular frequency of 1st. mode using reduced model 
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