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SUMMARY: 
This paper looks at the sources, quantification and impacts of epistemic uncertainty on ground-motion 
predictions for future, or retrospective, earthquake scenarios.  The focus is specifically on the statistical 
epistemic uncertainty in the estimation of the ground motion model parameters. Current techniques, which use 
additive factors on the median model prediction, are valid for dealing with the epistemic uncertainty in the 
individual model, however the actual values of this factor are currently guessed. This paper presents a method by 
which this factor can be directly quantified for non-linear ground motion prediction equations using simulation 
techniques. The method is applied to existing non-linear ground motion equations and recommendations are 
made for the quantification of the factor in future studies.  An important practical application of this work is also 
presented; the quantification of uncertainty in Hazard Maps. 
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1. THE SOURCE OF STATISTICAL UNCERTAINTY IN PARAMETER ESTIMATION  
 
In future predictions of earthquake ground-motion, the standard deviation of the prediction, 
characterised by �, is commonly assumed to be aleatory (Strasser et al., 2009).  However the 
approaches taken to estimate this parameter dictate that it also represents a degree of epistemic 
uncertainty.  The value of � has a significant effect on seismic hazard analysis (Bommer and 
Abrahamson, 2006).  Therefore, the portion of � which is epistemic should be correctly characterised.  
Removing this epistemic uncertainty will result in a reduction of �, which can have a significant 
impact on the generation of hazard maps or loss estimates which use the ground-motion prediction as 
an input (Bommer and Abrahamson, 2006). 
 
In published GMPEs, the uncertainty in the parameters is usually not presented.  In the few cases in 
which an estimate is provided it is represented by the standard error associated with each coefficient.  
This parameter uncertainty results in epistemic uncertainty in median model predictions made using a 
GMPE (Arroyo and Ordaz, 2011).  The sources of this statistical uncertainty are now discussed, 
following the work presented in Arroyo and Ordaz (2011), to whom the reader is referred for a more 
detailed derivation.  The linear regression model for a GMPE can be expressed as shown in Equation 
1. 
 

 (1) 
 
Where Y is a known vector, with dimensions n x 1, including n observations of a measure of 
ground motion, Xk, is a known matrix of the input variables, of dimension n x k, B is an 
unknown k x 1 vector of the parameters to be determined in the regression analysis and e is 
an unknown n x 1 vector of the regression residuals. The elements of e are the sum of an 
inter (�i) and intra-event (�ij) residual. Following Joyner and Boore (1993), Arroyo and Ordaz 
(2011) assume that the correlation between �i values for different events is 0 and the 
correlation between �ij at different sites for a given earthquake is ��. The correlation between 
the values of e can therefore be represented as a block diagonal matrix: C = �Tc of 



 

 

dimensions Ne ×Ne, where Ne is the number of earthquake events. ce is an Nre ×Nre matrix, where Nre 
is the number of records for the ith earthquake, with diagonal elements equal to one and off-diagonal 
equal to ��. 
 
For a given value of ��, the values of �T and B which maximise the likelihood of Y are the 

weighted least squared estimators  and  (Draper, 1998) shown in Equations 1.2 and 1.3. 
 
For a given value of ��, the values of and B which maximise the likelihood of Y are the weighted 
least squared estimators  and  (Smith, 1998), shown in Equations 2 and 3.   
 

 (2) 
 

 (3) 
 
The value of �� that maximises the likelihood is found iteratively and therefore the values of  ����TTTT

2222 and B 
are related to �� of the maximum likelihood.  The covariance matrix ( ) for a given c is defined 
as follows (Smith, 1998; Arroyo, 2011): 
 

 (4) 
 
A GMPE may be used to predict future values of Y, represented by w, for a given scenario 

characterised by a set of values of X, using  and .  However, as the coefficient values B and the 
total model variance , are conditioned on YYYY and XXXX used in the analysis, it is not valid to predict w 
for values of XXXX outside the range of the original data (Arroyo and Ordaz, 2011).  That is, if the model 
is extrapolated, the variance of the model prediction is not necessarily related to the variability of the 
data used to derive the model (i.e. the range of values of the observed ground-motion at a given 
magnitude and distance).  Arroyo and Ordaz (2011) present Equation 5 to demonstrate how the 
variance of w can be represented by the predictive variance �p

2.  This value depends on both the 
uncertainty in the regression coefficients (Z , ZT) and the variability of the dataset �T

2, where 
Z is a vector of k parameters for which w is being predicted.    
 

 (5) 
 
Arroyo and Ordaz (2011) discuss how the variance of w is affected by uncertainty in the coefficient 
values.  Equation 5 demonstrates that �p

2 will tend to �T
2 if the i, as the variance of the regression 

coefficients will be small.  However, for a dataset which has a great deal of variability in the ground-
motion recordings for a particular magnitude-distance combination, the variance of the regression 
coefficients will be large and the variance of the predicted value increases. The uncertainty in 
parameter estimates can therefore clearly be classified as epistemic because estimates of the 
parameters become more precisely defined as the dataset becomes larger (Arroyo and Ordaz, 2011).  
In their paper, Arroyo and Ordaz (2011) examine the impacts of statistical uncertainty in the 
parameters only for linear models.   To illustrate the impact of this uncertainty on future predictions 
made using a non-linear GMPE, Monte Carlo simulations are now used to quantify the influence that 
uncertainty in the parameters has on ground-motion predictions using the predictive model for Arias 
Intensity presented in Foulser-Piggott and Stafford (2011) (FPS).  This is achieved by sampling from 
the covariance matrix, COVB.  The FPS model is shown here in Equations 6, 7 and 8 and the values of 
the coefficients are given in Table 1.1. 
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Table 1.1. The coefficient values for the FPS model.  The model uncertainty, partitioned into an intra-event and 
inter-event component is also provided for both functional forms. 
 

Coefficient FN value  Coefficient FN value 

c1 5.1961  v1 -1.1335 
c2 -0.2371  v2 -0.6519 

c3 -3.6561  v3 -0.0022 

c4 0.2309  v4 0.1327 

c5 5.4651  �E 0.6812 

c6 0.3186  �A 0.8975 
 
 
 
2. THE IMPACTS OF STATISTICAL ERRORS IN THE PARAMETERS ON Ia 
PREDICTIONS  
 
The impact of statistical uncertainty in the coefficients on the median predictions of the equation for 
Arias Intensity Ia, referred to as FPS, is examined using Monte Carlo simulations. 
 
Firstly, a regression analysis is conducted in “R” using the FPS model form and the metadata used to 
derive this model.  From this regression, the estimated coefficients of the model, the standard error 
associated with each coefficient and the correlation and covariance matrices of the coefficients are 
extracted.  The correlation matrix is shown in Table 2.1. 
 
There are very strong correlations between a number of the coefficients which would result in 
sensitivity of the coefficients to changes in the dataset.  As the coefficients are correlated, the Monte 
Carlo simulations draw n possible coefficient values from a multivariate normal distribution defined 
by the coefficient values (presented in Table 1.1) and the extracted covariance matrix of these 
coefficients.  From the simulations, there are two relevant issues relating to the coefficients of the 
model.  The first is the assumption of normally distributed coefficients, which may be challenged as 
coefficients could in theory have any distribution.  The second is that the values of the coefficients, v3 
and v4, have a large standard error which leads to a large range of simulated values and results in 
strong effects on the model predictions.  This analysis suggests that including these terms in the 
model, whilst having a physical meaning, has a weak statistical basis.  It can be questioned whether it 
is appropriate to select terms on the basis that they are just statistically significant due to the impact on 
the overall variability of the model.  
 
 
 
 

 



 

 

Table 2.1. Correlation matrix of coefficients COR(B) 
Coefficients 
( 7 d.ps)  

c1 c2 c3 c4 c5 c6 v1 v2 v3 v4 

           

c1 
1 -0.72142 0.312842 -0.51121 0.274256 -0.16021 -0.22075 -0.15275 0.650571 -0.4298 

c2 
-0.72142 1 -0.78972 0.854061 0.163609 0.044718 0.101949 0.43004 -0.50278 0.048243 

c3 
0.312842 -0.78972 1 -0.96978 -0.28961 -0.01064 0.098647 -0.49786 0.288127 0.242738 

c4 
-0.51121 0.854061 -0.96978 1 0.174501 0.011588 -0.0009 0.482605 -0.42083 -0.10123 

c5 
0.274256 0.163609 -0.28961 0.174501 1 -0.04882 -0.12915 0.542967 -0.14514 -0.34999 

c6 
-0.16021 0.044718 -0.01064 0.011588 -0.04882 1 -0.01666 -0.01305 0.037428 -0.00574 

v1 
-0.22075 0.101949 0.098647 -0.0009 -0.12915 -0.01666 1 -0.23918 -0.05023 0.54932 

v2 
-0.15275 0.43004 -0.49786 0.482605 0.542967 -0.01305 -0.23918 1 -0.27861 -0.65543 

v3 
0.650571 -0.50278 0.288127 -0.42083 -0.14514 0.037428 -0.05023 -0.27861 1 -0.40531 

v4 
-0.4298 0.048243 0.242738 -0.10123 -0.34999 -0.00574 0.54932 -0.65543 -0.40531 1 

 
The impact of statistical uncertainty in the parameters on both the mean and median of future 
predictions made using the GMPE is shown for three cases, in Figure 1.  These are: the variation of the 
mean and median prediction of Arias Intensity (Ia) with magnitude (Mw) for distance ranges, the 
variation of Ia with Rrup for Mw values and the variation of Ia with Rrup for Vs30 ranges.   In each case, 
the original model predictions are shown and the n randomly drawn coefficients and the FPS 
functional form are used to obtain the mean or median prediction of Arias Intensity and mean model 
predictions plus or minus two standard deviations. 

Figure 1. Variation of  median and mean predictions of Ia with: Left (a) Rrup for Vs30 = 760 m/s, Frv = 0 
and Rrup values: 10km, 30km and 100km. Right (b) Rrup, for Vs30 = 760m/s, Frv = 0 

and Mw values: 5.5, 6.5, 7.5. Bottom: (c) Rrup for Mw = 6.5, Frv = 0 and Vs30 values: 180m/s, 360m/s, 760m/s. 



 

 

The first aspect to test is whether or not the distribution of the predictions of Ia are normal, i.e. if it is 
valid to represent the distribution of the predictions by plotting a mean or median prediction plus or 
minus two standard deviations.  For a sample of all of the predictions in each range, a Kolmogorov-
Smirnoff normality test is conducted and a QQ-plot drawn.  Examples of a histogram and QQ-plot are 
shown in Figure 2 for: Rrup = 30km, Frv = 0 and Vs30 = 180m/s.  The results of the K-S tests for this 
example is: D = 0.328, p-value = 0.01 which is representative of the results for the other events and 
therefore indicates that the distributions are normal.  However, Figure 2 shows that there may be some 
skew in the distributions of predictions and therefore, the skewness for each distribution is also 
calculated.  The calculated skewness is extremely small and the value is not consistent within ranges, 
i.e. distributions may be skewed towards the maximum or minimum prediction in the same range.  It is 
therefore assumed that the distributions Ia are normal and the variation in the median prediction may 
be well represented using a normal distribution and therefore standard deviations.  
 

 
 

Figure 2. Histogram and QQ-plot for lnIa variation with Mw for Rrup = 30km, Frv = 0 and Vs30 = 180m/s. 
 
 

The figures demonstrate that the variation of values of the median predictions, represented by the 
mean prediction plus and minus two standard deviations, is large and the variation is not constant 
across the predicted range.  In particular there is a large variation at extreme values of the variables 
Rrup and Mw, i.e. for large events at close distances.  Additionally Figure 1c demonstrates that the 
variation in values for sites experiencing non-linear effects (low Vs30 values) is extremely large.   
Figure 1c shows a key result of the analysis, as the variation in predictions for sites with non-linear 
site response (Vs30 = 180m/s) at a close distance, exceeds the variation in model predictions obtained 
for sites with different shear-wave velocities Vs30 = 360m/s and 760m/s.  This indicates that the non-
linear site response terms have a large impact on the uncertainty in the model predictions.  The 
difference in mean and median predictions can also be investigated using these figures in order to 
determine the uncertainty in the median prediction.  The mean prediction appears to be consistent with 
the median prediction from the simulations, which indicates that the distribution of Ia values is not 
skewed. 
 
This analysis has implications for future predictions made using a GMPE, particularly in the context 
of Earthquake Loss Estimation that assumes that the median prediction is exact.  Instead, there is a 
large range of values of median predictions resulting from the epistemic uncertainty associated with 
the statistical estimation of the parameters.  This also has implications for ground-motion models 
which are currently compared on the basis of their median predictions.  Ground motion models which 
are assumed to give significantly different median predictions may actually give comparable ranges of 
predictions.  An important application of this work is in the use of the results to quantify the epistemic 
uncertainty due to parameter estimation in hazard maps.  This is discussed in further detail in the next 
section. 
 
 
3. QUANTIFYING THE EPISTEMIC UNCERTAINTY IN GMPE PREDICTIONS FOR 
HAZARD MAPS 
 
Seismic Hazard Maps display earthquake ground motions for various return periods and are used in a 



 

 

number of applications including seismic provision for building codes, insurance calculations, risk 
assessments, and public policy decisions (Petersen et al., 2008). For example, the 2008 U.S. 
Geological Survey (USGS) National Seismic Hazard Maps are derived from seismic hazard curves 
calculated at sites across the United States.  These maps provide levels of ground motion that have the 
same frequency of being exceeded in a given period of time (Petersen et al., 2008).  The USGS maps 
are used as an example in this section, as they can be considered to be the current state of practice, 
having been constructed using expert opinion and then extensively reviewed (Petersen et al., 2008).  
The maps also make an attempt to account for the model-specific epistemic uncertainty associated 
with scenario predictions of ground-motions (Stafford, 2008).  
 
There are three sources of uncertainty of interest to the production of hazard maps that arise from the 
process of GMPE development: 
 

 Inexact form of the model and selection of particular model formulation. 
 Selection of a particular database. 
 Statistical errors in the estimation of parameters. 

 
The first two may be addressed by the use of multiple models (Youngs, 2006; Stafford, 2008).  In this 
section, it is demonstrated that the third can be quantified using the method presented in Section 2.    
 
3.1 State-of-practice 
 
The current USGS approach for generating National Hazard Maps incorporating epistemic uncertainty 
is to use a logic tree formulation during the probabilistic seismic hazard analysis (PSHA), shown in 
Figure 3.  The portion of interest in this diagram is the “Ground-motion models” section on the right.   

Figure 3. Logic tree for fault sources in the compressional region of the Pacific Northwest (PacNW).  The 
portion of interest in this research is the “Ground-motion models” section on the right of the diagram.  gnd is the 

logarithm of median spectral acceleration or peak ground acceleration; dgnd is uncertainty in median spectral 
acceleration or peak ground acceleration at a given distance (R) and magnitude (M), (from Petersen et al. (2008). 
 
A logic tree theoretically allows the first two sources of uncertainty in the list above to be captured by 
allowing a suite of ground-motion models to be used to make scenario predictions.  This is important 
because ground-motion models can have divergent predictions for many scenarios the result of which 
are loss estimates which are very sensitive to the ground-motion model used (Stafford, 2008a).  An 
example of the difference in predictions obtained by different NGA ground-motion models at long 
periods is shown in Figure 4.  PSHA commonly uses multiple GMPEs within a logic tree framework 
to account for these two sources of uncertainty (Arroyo and Ordaz, 2011). In Figure 3, the different 
ground-motion models used to predict ground motions for the USGS National Hazard Maps are shown 
in the “Ground-motion models” section and are the relationships of Boore and Atkinson (2008), 



 

 

Campbell and Bozorgnia (2008) and Chiou and Youngs (2008).  These three NGA models used to 
predict ground motions have equal weighting (0.333).  For each individual model, there are another set 
of branches intended to account for epistemic uncertainty in the individual models. This “double 
branch” is intended to account for all components of epistemic uncertainty (Petersen et al., 2008). 

 
Figure 4. From Bommer et al. (2008), showing variation of predictions of 

ground-motion models particularly at long periods. 
 
The purpose of using a suite of equations in a logic tree approach is to capture the first two sources of 
epistemic uncertainty.  However, a portion of the uncertainty is still not identified as epistemic, as the 
suite of equations does not constitute the complete set of all possible models (Bommer and 
Scherbaum, 2008).  This is compounded by the use of similar datasets and the same functional forms 
that are largely governed by the same theory to develop ground-motion models, which is likely to hide 
the true extent of the first two sources of the epistemic uncertainty.  This is demonstrated by 
examining Figure 5 (Stafford, 2008), where the median predictions for a number of ground-motion 
models, three of which are used in the production of National Hazard Maps for the Western United 
states, are shown.  It is evident from this figure that there is little variation in the median predictions 
from the different models which suggests that the true epistemic uncertainty may not be being 
captured.   

 
Figure 5. The median predictions for four ground-motion models (where  Boore and Atkinson (2008), Campbell 

and Borzognia (2008) and Chiou and Youngs (2008) are used in the production of National Hazard Maps) 
showing little variation in the median predictions from the different models which suggests that the true 

epistemic uncertainty may not be being captured, from Stafford (2008). 



 

 

The USGS method deals with epistemic uncertainty for individual models by assuming, with no 
theoretical justification, that it is ±50% on the model median prediction for scenarios with magnitudes 
(Mw) greater than 7 and distances less than 10km (Petersen et al. 2008).  When applied to models 
predicting spectral acceleration, this ±50% relates to the addition (�) of 0.4 to the natural logarithm of 
the spectral acceleration.  For different combinations of magnitude and distance values, or magnitude-
distance bins, the value of an additive factor dgnd is calculated on the basis of the relative number of 
earthquakes that have been recorded in these bins, as shown in Equation 9 (Petersen et al. 2008). 
 

 (9) 
 
Where n is the number of earthquakes with recordings in the bin: Mw, Rrup  < 10km, and Ni is number of 
earthquakes with recordings in the ith magnitude-distance bin.  The way in which the epistemic 
uncertainty resulting from parameter uncertainty can then be incorporated into the logic tree is seen on 
the far right of Figure 6.  For each individual model, additional branches are added based on ±dgnd.  
The first branch is the median value predicted by the GMPE (logarithm of the ground-motion 
measure) and has a weight w1 = 0.63. The second and third branches are the median value predicted 
by the GMPE ±dgnd with weights  w2 = w3 = 0.185 (Arroyo and Ordaz, 2011).   
 
A shortcoming of the USGS National Hazard Maps approach to dealing with the epistemic uncertainty 
in ground-motion model predictions is that the source of uncertainty arising from the statistical errors 
in the estimation of the parameters is not directly quantified.  Stafford (2008a) identifies the following 
specific problems with the USGS approach to the quantification of epistemic uncertainties in the 
individual GMPEs.  Firstly, the dgnd terms cannot theoretically be the same for all models, as the 
dgndi value is calculated using characteristics of the different datasets used to derive the individual 
models.  Secondly, the ±50% uncertainty has no empirical basis. Thirdly, the factors to adjust this 
50% uncertainty for other magnitude-distance bins do not account for the fact that this value is 
calculated based on the number of events in each bin and not the number of recordings.   Arroyo and 
Ordaz (2011) look at the quantification of epistemic uncertainties for National Hazard Maps.  
However these authors focus only on linear ground-motion models and do not address the 
shortcomings in the way in which the variation in dgnd for different magnitude-distance bins is dealt 
with.  Therefore, in the next section, an improved method for quantifying the epistemic uncertainties 
in future GMPE predictions for Hazard Maps is presented. 
 
3.2. A new method for quantifying epistemic uncertainty in individual GMPE predictions 
 
This section focusses on the quantification of the value of dgnd using the work presented in 
Section~\ref{sec:61} and looks in more detail at the effects that the distribution of ground-motion 
predictions about the median value has on the quantification of epistemic uncertainty in ground-
motion predictions.  Here, a method is presented which can be used to obtain dgnd for Arias Intensity 
(Ia) predictions.  This method may easily be applied to any ground-motion measure of interest.  
 
The value of dgnd is quantified for Ia predictions using the method presented in Section 2.  The n sets 
of coefficient values created using Monte Carlo simulations are used to produce n model predictions 
for the different combinations of magnitude and distance values plotted in Figures 1a and 1b.  In a 
logic tree framework analogous to that presented by Petersen et al. (2008), it is desirable to use a three 
point discrete approximation to represent the distribution of the ground-motion predictions for a given 
magnitude-distance combination.  This allows a “triple branch” of predictions for a given GMPE, a 
median and an upper and lower value, where each branch has an assigned weight.  The discrete 
approximations method of Miller and Rice (1983)  is used to assign weights to logic tree branches. 
 
The method presented by Miller and Rice (1983) is applied, by assuming that the predictions for Ia are 
normally distributed about a mean value.  The normal distribution is then approximated using a 3 point 
discrete approximation method.  Miller and Rice (1983) present 3-point discrete approximation values 



 

 

for the normal distribution (with mean = 0 and standard deviation = 1) as follows, with weights shown 
in brackets: -1.732051 (0.166667), 0 (0.666667), 1.732051 (0.166667).  The values with these weights 
which correspond to the distribution of Ia values for the relevant magnitude-distance combination, can 
then be calculated by multiplying by the standard deviation and adding the mean of the distribution of 
Ia values (for the magnitude-distance combination).  The major assumption here that may be 
challenged is that the distribution of Ia values is normal.  
 
The value of dgnd for each magnitude-distance combination may now be calculated as the percentage 
difference between the median Ia prediction and the Ia prediction with weight 0.166667.  The dgnd 
values for the magnitude-distance combinations are then used to obtain average values of dgnd for the 
magnitude-distance bins shown in Table 4.1 (column 2).  These bins are chosen to allow comparison 
of the results of this study with existing studies and column 3 of Table 4.1 gives the published values 
of Arroyo et al. (2011) who use a similar 3 point approximation of the distribution of the predictions 
with marginally different weights on the logic tree branches 0.185, 0.63, 0.185.  The final column of 
Table 4.1 shows the results obtained for dgnd using the method of Petersen et al. (2008) on the dataset 
used in this study, i.e. defining weights on the basis of the number of earthquakes in the dataset for a 
given magnitude distance range.  The results produced by the Petersen method are neither consistent 
with those obtained using the Monte Carlo approach nor those obtained by Arroyo et al. (2011).  This 
gives further support to adopting the approach outlined in this paper for the quantification of epistemic 
uncertainty due to statistical uncertainty in the parameters. 
 
Table 4.1. For different magnitude and distance ranges (Vs30 = 760m/s, Frv = 0), dgnd: column 2, results 
of this study, percentage difference between prediction with weight 0.17 (defined according to Miller 
and Rice (1983) and median prediction (weight 0.7); column 3, dgndA from Arroyo et al. (2011) 
(percentage difference between prediction with weight 0.18 and median prediction (weight 0.6); 
column 4, dgndP from the method of Petersen et al. (2008) and the dataset used in this study. 
 
Magnitude range Distance range dgnd dgndA dgndP 
5 < M < 6 Rrup < 10 0.372 0.375 0.133 
5 < M < 6 10 < Rrup < 30 0.229 0.21 0.082 
5 < M < 6 Rrup > 30 0.262 0.245 0.141 
6 < M < 7 Rrup<10 0.396 0.23 0.092 
6 < M < 7 10 < Rrup < 30 0.272 0.225 0.078 
6 < M < 7 Rrup > 30 0.246 0.23 0.082 
M > 7 10 < Rrup < 30 0.468 0.4 0.4 
M > 7 Rrup > 30 0.377 0.36 0.283 
5 < M < 6 Rrup < 10 0.372 0.31 0.4 

 
 
4. CONCLUSION 
 
The results presented herein demonstrate that the epistemic uncertainty associated with the statistical 
uncertainty in the parameters can be quantified for any combination of magnitude and distance values 
of interest and predictions can also be made for magnitude-distance bins.  For Arias Intensity (Ia), the 
largest epistemic uncertainty is obtained for large magnitude events at close distances and there is a 
large amount of variation in the values of dgnd.  This is expected, as the scenarios with the highest 
uncertainty, i.e. extreme values with less data and regions where non-linear site response occurs, 
correspond to the scenarios with the least empirical constraint.  This method also allows the flexibility 
to define different positive and negative values for the increment dgnd if the distribution of predictions 
is skewed.  The results of the analyses conducted are similar to those presented by Arroyo et al. 
(2011).  However this study suggests that larger values of uncertainty are obtained for all bins, with a 
particularly significant difference for large magnitude and close distance scenarios. The work 
presented in this section provides a consistent approach to quantifying the epistemic uncertainty due to 



 

 

the statistical errors in the parameters using Monte Carlo simulations and can be applied to hazard 
maps using a logic tree framework.  The ability to quantify this component of epistemic uncertainty 
offers significant enhancements over methods currently used in the creation of hazard maps as it is 
both theoretically consistent and can be used for any magnitude-distance scenario. 
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