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SUMMARY:  
The control approach taken in this paper is to replace selected bars in reticulated shell with passive viscoelastic 
dampers. Sensitivity method is proposed to determine the optimal topology of dampers in the shell. Based on the 
eigenvalue perturbation and earthquake spectrum concept, the sensitivity of shell is calculated. Contrast the 
sensitivities of all elements; meanwhile, considering the symmetry topology of elements, the reasonable 
topology of damper is selected. The optimal shell is analyzed under earthquake actions. The results show that: 
the sensitivity method is effective for getting optimal topology. The displacement control effect of optimal 
topology dynamic responses reaches to 5%-30% and the axial force control effect reaches to 16%-45%. 
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1. GENERAL INSTRUCTIONS 
 
The trend in development of long-span shells has been towards higher, longer and more elaborated 
structural configurations. As a result, new challenges have arisen to ensure the safety and performance 
for these shell structures when subjected to strong earthquakes and severe winds (Cao and Zhang, 
2000). Various vibration control methods have been proposed for shell control, including 
rubber-bearing isolators (Shingn and Niki, 2001), tuned mass and tune liquid dampers (Shen and Lan, 
2001), viscous dampers (Fan et al., 2005; Kasai et al., 2001), controllable fluids devices (Onoda et al., 
1996; Xu et al., 2001; Oh and Onoda, 2002), and replaceable dampers (Ni, 2001; Yang et al., 2011). 
Four prototype viscous dampers are used for reticulated cylindrical shell for laboratory testing by 
Liang (Liang et al., 2003) proposed the effective topologies and parameters codes for replaceable 
damper of cylindrical shell. To evaluate the parameter effects of damper topologies and damping 
coefficient for reticulated spherical shell, various damper topologies and examples were simulated by 
Yang (Yang et al., 2011).  
 
The location and amount of dampers are important parameters in research of replaceable bar-type 
damper in reticulated shell. The suitable location of dampers can obtain better effects while the 
amount of dampers is fixed or obtain better effects using fewer dampers. Agrawal and Yang (Agrawal 
and Yang, 1999) developed a new combine algorithm for optimal location research of passive dampers 
in space structures suffer earthquake action or wind load. This algorithm is useful for space structure 
such as reticulated shell, but the algorithm is difficult to be realized. Genetic algorithm is used by 
Singh and Moreschi (Singh and Moreschi, 2002) to determine the optimal location and size of 
dampers in structure. Some researchers have considered sensitivity method in optimal location study 
of dampers. Ni (Ni, 2001) uses this concept to determine the location and amount of replaceable 
dampers in double-layer reticulated cylindrical shell. The results indicate that it is the most effective 
location to replace the elements where sensitivities of shell natural frequency and deformation can be 
affected easily. Furthermore, the authors develop the optimal rule corresponding to that method.  
 



Structural design sensitivity analysis concerns the relationship between design variables available to 
the design engineer and structural responses determined by the laws of mechanics. Chen (Chen, 1991) 
develops the sensitivity theories for structure vibration analysis. Kyung and Nam (Kyung and Nam, 
2005) develop the sensitivity analysis theory for structural optimization and introduced analysis 
methods deeply. Habib (Harbib et al., 2007) adapts the sensitivity method to solve the optimum shape 
design for shell structures. Amini and Ghaderi (Amini and Ghaderi, 2011) develop a new algorithm in 
optimal topology study for structure with MR dampers, the effective is demonstrated in the analysis.  
 
In this study, sensitivity is used to determine the topology of control dampers in double-layer 
reticulated spherical shell. To calculate the sensitivity of structural natural frequency various, 
generated by small perturbation of every element section, eigenvalue perturbation and earthquake 
spectrum concept are used. Contrasting the elements sensitivities, then considering the symmetry 
topology, the reasonable location of damper is selected. Base on theory research and formula 
deduction, ANSYS Parametric Design Language (APDL) incorporated in the ANSYS finite element is 
used for the work. Moreover, parameter effects of sensitivity analysis are the required results for 
optimal design. 
 
 
2. SENSITIVITY THEORY 
 
2.1. Eigenvalue Design Sensitivity Analyses 
 
Design sensitivity analysis is commonly used to represent a structural parameter that can affect the 
results of the analysis. When the cross-sectional area of a truss component changes, the dynamic 
results vary for the applied vibration load because the stiffness matrix changes. In such cases, the 
location and the related parameters of the truss component can be a design. The natural frequency of 
vibration load is eigenvalue of a generalized eigenvalue problem; hence, it depends on the design. In 
this paper, the expansion into power series is used to obtain derivatives of such eigenvalues in which 
repeated eigenvalues appear as an efficient solution to the optimal location design problem. 
 
For a discrete system such as reticulated shell, the freedom is N, { }q  is the generalized coordinate 
matrix. [ ]K  and [ ]M  are the stiffness and mass matrixes according to matrix { }q . ω is the natural 
frequency of structure, which is defined as function 2ωλ = .  
 
The oscillation equation of MDOF undamped structure is shown as: 
 

[ ]{ } [ ]{ } { }0=+ qKqM &&                                                   (2.1) 
 

where { }q&& is the generalized acceleration vector of MOD structure. 
 
The natural vibration of structure is harmonic oscillation, the function is given as: 
 

{ } { } ( )φω −= tuq cos                                                    (2.2) 
 
where { }u  is the vibration mode matrix. 
 
After substituting Eq. (2.2) into Eq. (2.1), the derivative of Eq. (2.1) with respect to the eigenvalue 
problem of discrete system is described as: 
 

[ ]{ } [ ]{ }uMuK λ=                                                     (2.3) 
 
The variations of structure are given by stiffness and mass matrixes. The alternative stiffness and mass 
matrixes are shown. 
 



           [ ] [ ] [ ]10 MMM ε+=                                                  (2.4a) 
 

[ ] [ ] [ ]10 KKK ε+=                                                   (2.4b) 
 

where ε  is a perturb design parameter. The system is original system according with 0=ε . [ ]0K  
and [ ]0M  as and mass matrixes of original system. [ ]1Kε  and [ ]1Mε  are the variations for 
stiffness and mass matrixes of system. Furthermore, while [ ]1Kε  and [ ]1Mε  approach zero, [ ]K  
and [ ]M  approach [ ]0K  and [ ]0M separately. 
 
In the derivatives, it is assumed that all eigenvalues are simple and not repeated. Under these 
conditions, the eigenvalues and vibration modes are subtle changed with a small number of [ ]1Kε  
and [ ]1Mε . 
 
2.2 Dynamic Sensitivity Analyses 
 
Here, for reticulated shell, i is the number of mode and j is the number of element. { }iu and iλ are the 
mode and eigenvalue of mode i. They meet the equation below:    
 

[ ] [ ] { } 0)( =− ii uMK λ                                                 (2.5) 
 

Commonly, stiffness and mass are seldom expressed as the display function of variables. In this study, 
for the reason of programming easier, the differential formulas of sensitivity are expressed as 
perturbation form. [ ]KΔ and [ ]MΔ are respectively the increment of stiffness matrix and mass matrix 

generated by the small perturbation in the design variable [ ]jbΔ . iλΔ and { }iuΔ  are the increment of 
eigenvalue and eigenvector respectively. The modal sensitivity ji ,λ and { }jiu , , the derivatives of 

iλ and { }iu  to variable jb (j=1,2，……,L), can be expressed as follows. 
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where iλΔ and { }iuΔ can be calculated by first-order perturbation equation. 
 
In finite element analysis problems, [ ]KΔ and [ ]MΔ are the total increment of element stiffness and 
mass matrix respectively, shown as follows.  
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Therefore, the modal sensitivity equations are transformed to finite element sensitivity equations. Thus, 

ji ,λ and{ }jiu ,  can be reduced as: 
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where e

ji ,λ  and { }e
jiu ,  are the sensitivity of iλ and{ }iu  of element e. 

 
The sensitivity of structural natural frequency is set as the optimal objective function. The elements at 
the location where the variety of structural natural frequency is max, while the shell suffers a small 
perturbation, are replaced by the bar-types dampers. The structural dynamic sensitivity indicates the 
effects of structural design variable to structural dynamic characteristics. The effect is more 
remarkable at the location where the sensitivity is bigger. In this study, the section area of element is 
set as design variable. The elements at the location where the sensitivities of natural frequency are 
bigger than the others are replaced by the bar-types dampers, where section area is suffered from a 
small perturbation. The optimal objective function of dampers location can be written as 
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where iα  is the weight parameter, which can be set as the eigenvalue i corresponding to earthquake 
response spectrum. ji ,λ is the sensitivity of structural i-order natural frequency generated by the 
section area perturbation of element j. ( )jJ  indicates the influence degree of element j to the 
vibration mode.  
 
 
3. MODEL GENERATION 
 
3.1 Design Parameters of Shell 
 

The Kiewette-8 spherical reticulated spherical shell is commonly used in engineering. The model 
shown in Figure 1 is 40m span and the height is 8m. The thickness of shell between upper and lower 
grid is 0.8m. The number of nodes is 289. The number of elements is 936. In calculation, the 
distributed mass is 200kg/m2 and modeled by MASS21 ELEMENT in ANSYS®. Nodes in lower layer 
have no external load. The bar element of shell is made by steel pipe and modeled by PIPE20 
ELEMENT in ANSYS®. PIPE20 is Plastic Straight Pipe Element. The element has six degrees of 
freedom at each node: translations in the nodal x, y, and z directions and rotations about the nodal x, y, 
and z axes. Stress stiffening and large deflection capabilities are included. The bars in the upper and 
lower shell have an inner diameter of 123.5mm and an outer diameter of 127mm which stiffness is 
about 4×107N/m. The bars in-between upper and lower shells have an inner diameter of 118mm and an 

 

 
Figure 1. Plane and elevation view of double-layer reticulated shell 

 



outer diameter of 121mm, the stiffness is about 3×107 N/m. The length of latitudinal bar on upper 
layer is 2.6-2.8m. The length of slanting bar on upper layer is 3.7-4.4m. The length of costal bar on 
upper layer is 3.7m. The length of bar on lower layer is 2.8-4.4m. The length of bar between upper and 
lower layer is 2.0-2.4m. 
 
The shell is hinged at the support, which is modeled by NODE ELEMENT with 3 rotation degree of 
freedom in ANSYS®. The element joints of shell are rigid, which is also for node and damper. The 
elements in lower and middle layer of double layer reticulated shell have only axial pressure but no 
bending moment or the bending moment is very small. So we can replace these elements with dampers. 
Because of the complexity of shell with support column or other support structures, which could affect 
the control responses, the shell studied here is placed on the ground. The controlled shell with 
substructure will be studied in the follow-up work. 
 
The damping coefficient of global shell fits the Rayleigh Damping theory and the damping ratio is 
0.02. The steel is Q235 type which has a modulus of elasticity of 2×1011N/m2. The yield strengthσ of 
steel is 2.35×108N/m2. The buckling code of steel fits the Von Mises Isotropic Hardening Code. 
 
3.2 Design Parameters of Replaceable Bar-Damper 
 
The damping coefficient of VE damper is 1×105Ns/m and the stiffness is 6×104 N/m, which is 
modeled by COMBIN14 ELEMENT in ANSYS®. The model sketch of replaceable bar-damper is 
shown in Figure 3. The degree of element COMBIN14 is according to the amount of dampers. Every 
shell bar is separated into three finite element parts and every damper is one FEM element. The large 
displacement geometric non-linearity analysis method is adapted in calculation. 
 
The replaceable VE dampers are modeled as a linear Kelvin-Voigt element, i.e., linear stiffness and 
viscous damping 
 

ucukF &+⋅=                                                          (3.1) 
 

where c is the damping coefficient, k the stiffness of damper, u the relative deformation of damper, 
and u& the relative velocity of damper. The material used in damper is piezoelectric and steel, which 
detail characteristic of damper is presented in National Science Foundation report (Yang Y. 2009). 
The preliminary step principal and test of damper is finished. This kind of damper can provide the VE 
characteristic for the adjustable feature of piezoelectric. The parameters of dampers is: k is equal to 
6×104 N/m, and c is equal to 1×105Ns/m. The elasto-plastic characteristic of steel used in shell is : the 
modulus of elasticity is 2×1011N/m2 and the yield strengthσ of steel is 2.35×108N/m2. The buckling 
code of steel fits the Mises Isotropic Hardening Code. 
 
The equation of motion of the original reticulated shell is given by the following second-order 
differential equation 
 

[ ]{ } [ ]{ } [ ]{ } PuKuCuM =++ &&&                                             (3.2) 
 

where [ ]M  is the mass matrix, [ ]K  is the stiffness matrix, [ ] [ ] [ ]KMC βα +=  is the damping 

matrix, { }u  the nodal displacement vector, P the input load vector and 
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The Rayleigh Damping is calculated by the first two frequencies of the shell. The damping ratio ξ  is 
0.01. α and β  are used in ANSYS® to model Rayleigh Damping.  
 
For the reticulated shell with replaceable dampers, the equation of motion is given by  

 

[ ]{ } [ ] [ ]( ){ } [ ] [ ]( ){ } PuKKuCCuM =Δ++Δ++ &&&                                   (3.3) 



 
where [ ]K  is the stiffness matrix of shell not include dampers, [ ]ΔK  the stiffness matrix associated 

with the VE dampers, [ ]C the damping matrix of shell not include dampers and [ ] [ ] [ ]KMC 11 βα += , 
[ ]CΔ  the damping matrix associated with the VE bar-type damper, which is considered in 
COMBIN14 element, 1α  and 1β  are according to the first two frequencies of the controlled shell. 
The damping matrix of structure with VE damper is considered to satisfy the orthogonal modes. The 
equivalent damping ratio of vibration mode j of controlled shell is shown as 
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where j

dE  is the energy dissipation of vibration mode j of controlled shell, which is related to the 

material characteristic of VE damper and the vibration mode of shell. jE is the maximum structural 
strain energy of vibration mode j, which is related to vibration mode of shell and the equivalent 
stiffness of shell. As a result of the decrease of damper stiffness compared to original shell bar, the 
damper bar has bigger deformation than shell bar. The energy dissipation of damper is increased with 
the increased deformation. That will reduce the dynamic responses of shell. 
 
3.3 Earthquake Records 
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(a) El Centro earthquake 
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(b) Taft earthquake 
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Figure 2. Ground acceleration record of earthquake actions 



 
Three input earthquakes are considered: El Centro (N-S, 1940), Taft (N-S, 1952) and Northridge (N-S, 
1995) as shown in Figure 2 where the peak values of earthquake acceleration are normalized to 
0.01m/s2. The normalized value 0.01 m/s2 will be timed relative value in analysis, for example, for 
frequent earthquake analysis, the acceleration time-history should be timed 140; for severe earthquake 
analysis, it should be timed 400.  
 
 
4. OPTIMIZATION DESIGN 
 
4.1 Controlled Shell Model without Optimization 
 
To access the effect of different damper topologies, fourteen different configurations have been 
considered before, as Figure 3. 

 

• Topology 1: All the diagonal and radial elements of the lower and middle layer are replaced with 
bar-type VE dampers. 

• Topology 2, 3: All the elements of the lower and middle layer are replaced with bar-type VE 
dampers. 

• Topology 4, 7, 8, 10, 13: All the perimeter elements are replaced with bar-type VE dampers. 
• Topology 5: The discontinuous perimeter elements are replaced with bar-type VE dampers. 
• Topology 6: The radial elements of lower and middle layer and the topology 6 as well as some 

has additional loop elements are replaced with bar-type VE dampers. 
• Topology 6, 8, 12, 14: The radial elements of lower and middle layers are replaced with bar-type 
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Figure 3.  Topologies for bar-type VE dampers (The number in brackets is the amount of bar-type dampers) 

 
 



VE dampers. 
• Topology 11: The diagonal elements of middle layer are replaced with bar-type VE dampers. 

 
4.2 Effect of Controlled Shells without Optimization 
 

To assess the effects of the various topologies shown in Figure 3, the numerical model was subjected 
to the three-dimensional earthquakes shown in Figure 2, with each of the records normalized to have a 
maximum acceleration of 4m/s2. The values of the damper parameters are presented in section 3. The 
control effects of the maximum displacement (UX, UY and UZ) are presented in Figure 4. From 
Figure 4, observe that the results of nodal displacement responses are significantly difference in x-, y- 
and z- direction. Most responses reduction in z-direction reaches to 5%-50%. But the responses 
reduction is less than 10% or even less in x- and y- direction. Especially for the displacement in x- and 
y- direction subjected to Taft wave, the responses reduction is only 5% or less than that. The control 
effect of axial force is good except for Taft wave. 
 
4.3 Sensitivity Analysis 
 
In the shell model, as mentioned last part, to achieve the damper location optimization, different 
program such as structural analysis, automatic mesh generation, sensitivity analysis and mathematical 
programming, are inter-related. Program modules are developed and communicated by using Matlab® 
language. The sensitivity curve and its ascending order arrangement curve of top 20 vibration modes 
are shown in Figure 5.  
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(a) The control effect of Ux 

 

 
(b) The control effect of Uy 
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(c) The control effect of Uz 

 
(d) The control effect of axial force  

 
Figure 4. Control effect of the maximum displacement of 14 kinds of topologies 

 
(Control effect = ((response of uncontrolled shell-controlled shell)/response of uncontrolled shell)×100%) 
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(a) Sensitivity curve of elements 
 

(b) Sensitivity curve in ascending order 
 

Figure 5. Sensitivity generated by section area perturbation of top 20 vibration modes 
 

 
4.4 Control Effect of Topology Optimization 
 
Based on the sensitivity results, the optimal topology 
is selected as Figure 6. The topology is the diagonal 
elements of middle layer are replaced with bar-type 
VE dampers. The numerical model of topology 
optimization is analyzed subjected to the 
three-dimensional earthquakes. The results are shown 
in Table 4.1. From Table 4.1, observe that the results 
of nodal displacement responses are good in x-, y- 
and z- direction. Responses reduction in z-direction 
reaches to 17%-10%. The responses reduction of El 
Centro and Northridge wave is over 10% in x- and y- 
direction and the response reduction of Taft wave 

reaches 4%-7%. The effects are better than the model without optimization.  
 
Table 4.1 The control effect of optimal topology shell 

earthquake Ux(m) % Uy(m) % Uz(m) % F(105N) % 
El Centro uncontrol 0.016 -- 0.010 -- 0.034 -- 1.8219 -- 
 control 0.013 18.75 0.009 10 0.023 32.35 1.0548 42 
Northridge uncontrol 0.022 -- 0.015 -- 0.046 -- 3.1300 -- 
 control 0.020 9.09 0.012 20 0.038 17.39 1.7218 45 
Taft uncontrol 0.022 -- 0.028 -- 0.062 -- 3.1887 -- 
 control 0.021 4.55 0.026 7.14 0.045 27.42 2.6766 16 
(Control effect = ((response of uncontrolled shell-controlled shell)/response of uncontrolled shell)×100%) 

 
 
5. CONCLUSIONS  
 
Replacing the elements of shell with bar-type dampers is an attractive control method that offers the 
reliable control but need not vary the grid form of shell. To take full advantage of the optimal topology, 
the sensitivity method is used for design and analysis. Kiewitt-8 type reticulated shell model has been 
used for control analysis. Meanwhile, 14 kinds of dampers topologies for this reticulated shell have 
been presented. Subsequently, the effect of dampers topologies is analyzed subjected to three 
commonly used 3D earthquake waves. The control effect of 8 kinds of dampers topologies is different 
and not good for every case. After that, the sensitivity analysis is used to get the optimal topology. The 
sensitivity orders are calculated based on top 20 vibration mode. The optimal placement of dampers is 
selected. The numerical model of optimal topology is analyzed. The control effect is better than the 
other topologies for every case. Responses reduction in z-direction reaches to 17%-10%. The 

 

Topology 12 (240) 

Figure 6.  The optimal topology for bar-type 
VE dampers(degree of COMBIN14) 



responses reduction of El Centro and Northridge wave is over 10% in x- and y- direction and the 
response reduction of Taft wave reaches 4%-7%. The effects are better than the model without 
optimization. 
 
 
AKCNOWLEDGEMENT 
This research is supported by National Science Foundation of China Nos. 50908036.  
 
 
REFERENCES  
 
Agrawal A K and Yang J N. (1999). Optimal Placement of Passive Dampers on Seismic and Wind-excited 
Buildings using Combinatorial Optimization. Journal of Intelligent Material Systems and Structures 10:12, 
997-1014. 
Cao Z and Zhang Y G. (2000). A Study on the Seismic Response of Lattices Shells. International Journal of 
Space Structures 15:3&4, 243-247. 
Chen Shuhuan. (1991). Vibration Theory of Structures with Random Parameters. Jilin Science and Technology 
Press. (in Chinese) 
Fan F, Shen S Z and Parke G A R. (2005). Study of the Dynamic Strength of Reticulated Domes under Severe 
Earthquake Loading. International Journal of Space Structures 20:4, 235-244. 
Habib Uysal, Rustem Gul and Umit Uzman. (2007). Optimal Shape Design of Shell Structures. Engineering 
Structures Vol: 29, 80-87. 
Izuru Takewaki. (1997). Optimal Damper Placement for Minimum Transfer Functions. Earthquake Engineering 
and Structural Dynamics Vol:26, 1113-1124. 
Kasai K, Motoyui S and Ooki Y. (2001). Viscoelastic Damper Modeling and Its Application to Dynamic 
Analysis of Visco-Elastically Damped Space Frames. IASS International Symposium on Theory, design and 
realization of shell and spatial structures, Nagoya, Japan, 266-267. 
Kyung K. Choi and Nam-Ho Kim. (2005). Structural Sensitivity Analysis and Optimization I & II. Springer 
Publisher, London. 
Liang H T, Wu J Z and Zhang Y G. (2003). Shaking Table experimental research on passive control of 
double-layer reticulated shell with some bottom chords replaced by dampers. Earthquake Engineering and 
Engineering Vibration 23:4, 178-182. (in Chinese) 
Ni Li. (2001). Theorical Study on Semi-active Control of Double-layer Cylindrical Lattice Shell. Thesis of 
Beijing University of Technology. (in Chinese) 
Oh H U and Onoda J. (2002). An Experimental Study of a Semi-active MR Fluid Variable Damper for Vibration 
Suppression of Truss Structures. Smart Materials and Structures 11:1, 156-162. 
Onoda J, Oh H U and Minesugi K. (1996). Semi-active Vibration Suppression of Truss Structures by ER Fluid 
Damper. Structural Dynamics and Materials Conference Vol: 3, 1569-1577. 
Shen S. Z and Lan T T. (2001). A Review of the Development of Spatial Structures in China. International 
Journal of Space Structures 16:3, 157-171. 
Shingn K and Niki T. (2001). A Study on Base Isolated Shell. IASS International Symposium on Theory, design 
and realization of shell and spatial structures, Nagoya, Japan, 262-263. 
Singh Mahendra P and Moreschi Luis M. (2002). Optimal Placement of Dampers for Passive Response Control. 
Earthquake Engineering and Structural Dynamics Vol: 31, 955-976.  
Yang Yang, B. F. Spencer, Li Youming and Shen Shizhao. (2011). Seismic Performance of Double-layer 
Spherical Reticulated Shell with Replaceable Bar-type Dampers. International Journal of Space Structures 26:1, 
31-44. 


