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SUMMARY: 
In order to develop an automatic damage detection methodology, the characteristics of building damage areas in 
high-resolution satellite images observed before and after the 2010 Haiti earthquake are examined.  From the 
texture analysis based on gray-level co-occurrence matrix, the dissimilarity of the images is identified as better 
classifier than other texture indices in detecting collapsed buildings.  By using the dissimilarity calculated from 
the pre- and post-event images, damage detection is performed to identify the distribution of the collapsed 
buildings and the accuracy of the detection is assessed by the ROC analysis.  The result shows that about 70% 
of the collapsed buildings are correctly detected by the proposed method. 
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1.  INTRODUCTION 
 
In a destructive earthquake, buildings and infrastructures would be severely damaged over a wide area.  
For planning early stage relief and recovery efforts, it is essential to identify building damage 
distribution immediately after the earthquake.  Remotely sensed images have been employed to 
assess the building damage in recent large earthquakes because the images can quickly capture the real 
world from space at a time. 
 
In the Haiti earthquake (MW7.0) on 12 Jan. 2010, more than 300,000 were killed, about 105,000 
houses were totally destroyed and over 208,000 homes were damaged (Government of the Republic of 
Haiti, 2010).  After the earthquake, remote sensing-based damage assessments were performed using 
high-resolution satellite images and aerial photographs (e.g., Ghosh et al., 2011).  However, since the 
building damage was visually identified by crowdsourced volunteers, many human resources were 
required to obtain the building damage map.  To quickly obtain the damage map with less labor, it is 
necessary to develop a methodology for automatically detecting the damage areas by an image 
analysis technique. 
 
Image texture analyses have been used for automatic or semi-automatic damage detection from 
high-resolution satellite images (Huyck et al., 2005; Rathje et al., 2005).  They estimated the 50m to 
100m-mesh based damage distributions by the texture analysis and compared to visually interpreted 
damage maps.  However, the textural characteristics of individual damaged and undamaged buildings 
and the detection accuracy for each building have not been fully discussed.  In this study, the 
characteristics of image texture in damaged buildings are examined using high-resolution satellite 
images observed before and after the 2010 Haiti earthquake and building-by-building damage data.  
The texture analysis is performed to automatically detect collapsed buildings and the detection 
accuracy is assessed. 
 
 
2.  SATELLITE IMAGES AND DAMAGE DATA 
 
In Port-au-Prince, the capital of the republic of Haiti, huge number of buildings was severely damaged 



in the 2010 Haiti earthquake.  A built-up area 
in Port-au-Prince is selected as the target area of 
this study.  High-resolution satellite optical 
images observed before and after the 
earthquake are used in the analysis.  Quick 
Bird (QB) image with the spatial resolution of 
0.6m and WorldView-2 (WV) image with the 
resolution of 0.5m are used as pre- and 
post-event image, respectively.  Although the 
use of same resolution images is preferable for 
digital analysis of two images, pre-event WV 
image is not available because the WV satellite 
has just launched in Oct. 2009.  The both 
images consist of four bands namely blue, green, 
red and near infrared band.  Figure 1 shows 
the pan-sharpened pre- and post-event images 
in the target area extending about 850m and 
750m for NS and EW directions, respectively. 
 
In order to examine the relation between the 
image characteristics and building damage, 
building damage data is used.  The UNISTAR/ 
UNOSAT created building damage data by 
visual interpretation of high-resolution satellite images and aerial photos observed after the earthquake 
(UNISTAR/UNOSAT, 2010).  The data includes the geo-referenced point data for all the buildings in 
Port-au-Prince with the damage level classified to four categories based on EMS-98; G5: Collapse, 
G4: Severe damage, G3: Moderate damage and G1: Negligible damage.  In order to examine the 
spatial characteristics of the images for each damaged building, the building footprints are delineated 
from the images and the damage levels are attributed to the footprints.  The building footprint data 
with the damage level is used as the damage data in this study.  Figure 2 shows the distribution of 
damage data in the target area.  The area covers totally 1378 buildings including 508 G5 buildings 
that correspond to about 40% of the total. 
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Fig. 1  Pre- and post-event high-resolution satellite images 

 
Fig. 2  Building damage data 



 
3.  CHARACTERISTICS OF IMAGES IN DAMAGED BUILDINGS 
 
3.1  Image Characteristics 
 
Figure 3 shows the comparison of the pre- and post-event images for each damage level.  We can 
confirm no difference between the images in the G1 building.  Also in the G3 building, significant 
change on the roof and its surroundings between the images is not identified.  We can identify debris 
around the G4 building as shown by an arrow and can estimate that the some part of the building is 
damaged.  However, the difference of the G4 building roof itself between the images is almost 
indiscernible.  In the G5-buildings, on the contrary, the roofs are completely destroyed and the debris 
produced from the collapsed building materials is scattered in and around the buildings, indicating that 
it is feasible to identify the collapsed buildings from the images.  In this study, we try to 
automatically detect the G5 buildings through the digital analysis of the images. 
 
When the details of the images in the G5 buildings are carefully examined, the building edges are 
clearly identified and the homogeneous pixels are distributed on the roofs in the pre-event image.  In 
the post-event image, on the other hand, the bright pixels and dark pixels are densely neighboured 
each other in the debris area.  Since such image change can be analyzed by the image texture, the 
texture analysis is applied to the images for detecting the collapsed buildings. 
 
3.2  Texture Measures Based on Gray Level Co-Occurrence Matrix 
 
The image texture measures have been proposed such as first-order, second-order and higher-order 
statistical measures.  Since the first order measures such as average and variance are based on the 
histograms of digital numbers in an image, the relation between neighbouring pixels cannot be 
evaluated.  On the other hand, the second-order measures such as indices based on Gray-Level 
Co-Occurrence Matrix (GLCM) can evaluate the relation between neighbouring pixels.  For the 
calculation of higher-order measures, many parameters are required and careful selection of 
appropriate parameters is needed.  In this study, the texture analysis based on the GLCM is applied. 
 
Figure 4 illustrates the schematic diagram for the calculation of the GLCM.  First, a windowed area 
is extracted from the image I (see Fig. 4(a)).  Next, co-occurrence frequencies of a pair of digital 
numbers (i and j) for horizontally and vertically neighbouring pixels are calculated and normalized by 
the number of total pairs (see Fig. 4(b) and (c)).  The GLCM is mathematically represented as the 
following equations; 

G5（Pre） G5（Post）

G1（Pre） G1（Post） G3（Pre） G3（Post）

G4（Pre） G4（Post） Debris

Fig. 3  Comparison of pre- and post-event images for each damage level 
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Here, CH and CV indicate the GLCM calculated for horizontally and vertically neighbouring pixels, 
respectively and m represents a size of the window.  Various texture measures based on the GLCM 
have been proposed (Haralick et al., 1973).  In this study, typical texture measures shown below are 
calculated. 
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Here, the equations are for 8-bit image (256 gray tone: 0-255).  UNI, ENT, CON and DIS represent 

 
Fig. 4  Schematic diagram for calculation of GLCM 



uniformity, entropy, contrast and dissimilarity of the image, respectively.  When the homogeneous 
pixels are concentrated, the image shows larger UNI.  When bright pixels and dark pixels are 
dispersed, the image shows larger ENT.  When the bright pixels and dark pixels are neighboured 
each other, the image shows larger CON and DIS. 
 
Before applying the texture analysis to the images, the resolution of the post-event WV image is 
resampled to 0.6m to superpose to the pre-event QB image with the resolution of 0.6m.  Among the 
four band images, the red band image is used in the analysis because the reflectance of the debris of 
masonry buildings in the red band is stronger than in other bands (Miura et al., 2007).  Since the 
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Fig. 5  Distribution of texture measures in collapsed buildings 



building size in the target area is about 10 to 20m, we adopt the window size for the GLCM, m, of 
25x25 pixels (15x15 m). 
 
Figure 5 shows the comparison of the texture measures in the G5 building shown in Fig. 3.  In the 
rough textured area in the collapsed building, the post-event UNI and ENT are expected to be smaller 
and larger, respectively.  However, the debris area shows larger UNI and smaller ENT because they 
are sensitive to the bright pixels in the debris.  Besides, significant changes between the pre- and 
post-event UNI and ENT are not identified.  On the contrary, the debris area in the post-event image 
shows larger CON and DIS while the area in the pre-event image shows smaller values, indicating that 
these indices are better classifier for the building damage detection.  Since the change of the pre- and 
post-event DIS is much clearer than that of CON, we adopt the DIS for the building damage detection 
in this study. 
 
 
4.  DETECTION OF COLLAPSED BUILDINGS 
 
As discussed above, the high DIS areas in the post-event image would possibly represent the collapsed 
buildings.  However, there are not only flat-roof buildings but also rough-roof buildings such as 
building with small features on the roof.  The post-event DIS would be also large in such rough-roof 
buildings even if they are not damaged, indicating that it is difficult to detect the collapsed buildings 
only by using the post-event DIS.  To suppress the effect of the rough-roofs, the ratio (Post/Pre) and 
difference (Post-Pre) of the pre and post-event DIS are calculated.  Figure 6 shows a close-up of a 
rough-roof building, the post-event DIS (PD), the ratio (RD) and the difference (DD).  Although the 
PD values are large in the building area, the values of the RD and DD are suppressed, suggesting that 
less damaged buildings can be classified more accurately by using not only the PD but also the RD or 
the DD. 
 
The median values of the PD, RD and DD in each building footprint area are calculated.  Figure 7 
shows the relations between (a) PD and RD, and (b) PD and DD.  Crosses and circles represent 
G1-G4 buildings and G5 buildings, respectively.  Although the values are largely dispersed, the 
G1-G4 buildings show smaller values and the G5 buildings tend to show larger values.  In order to 
find which index or combination of the indices can more accurately extract the G5 buildings, the axes 
of Z1-Z5 are defined as shown by solid and dotted lines in Fig. 7 and the values along the axes are 
calculated.  The index Z1, Z2 and Z3 correspond to PD, RD and DD, respectively.  The index Z4 
and Z5 indicate the combination of PD and RD and the combination of PD and DD, respectively. 
 
ROC (Receiver Operating Character- 
istics) analysis is applied to the indices 
for the accuracy assessment of the 
damage detection.  The ROC has 
been used in signal detection theory to 
depict the trade-off between hit rates 
and false alarm of classifiers (Fawcett, 
2006).  The ROC curve is based on 
the tow-by-two confusion matrix as 
shown in Table 1.  True Positive Rate 
(TPR) is calculated as a ratio of 
number of true positives (TP) divided 
by number of total positives (P).  
False Positive Rate (FPR) is calculated 
as a ratio of number of false positives 
(FP) divided by number of total 
negatives (N).  A ROC curve is 
plotted as a relationship between TRP 
and FPR for various thresholds. 
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Figure 8 shows the ROC curves for the Z1-Z5 indices.  In the ROC graph, the point (0,1) represents 
perfect classification.  If the curve is closer to the point (0,1), the detection accuracy is higher.  
Among the ROC curves, the Z5 shows higher accuracy than other indices, indicating that the 
combination of the PD and DD is better classifier for the damage detection.  As plotted in the Fig. 8, 
the TPR and FPR at the Z5 of 6.6 are 0.68 and 0.33, respectively.  The distribution of the collapsed 
buildings is estimated by classifying the buildings whose Z5 values are higher than 6.6 to the G5 
buildings.  Figure 9 illustrates the comparison of the collapsed buildings between the estimation and 
the damage data.  Many collapsed buildings are correctly detected by the proposed method.  Table 2 
indicates the number of the G5 and G1-G4 buildings correctly and mis-correctly classified.  The 
result shows that about 70% of the collapsed and less damaged buildings are correctly detected.   
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Fig. 7  Relationships between (a) Post-event DIS and Ratio of DIS 

(b) Post-event DIS and Difference of DIS 
 

Table 1  Classification for ROC analysis 

G5 G1-G4
G5 True Positive (TP) False Positive (FP)

G1-G4 False Negative (FN) True Negative (TN)

Total P N
True Positive Rate False Positive Rate

= TP/P = FP/N

Truth (Damage Data)

Estimation
(Image Analysis)

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2 also indicates that about 30% of the collapsed buildings are mis-detected.  To examine the 
cause of the mis-detections, the G5 buildings are classified to buildings whose roofs are completely 
destroyed and buildings whose roofs are partially damaged or undamaged in the image.  The result of 
the classification shows that about 90% of the former buildings are correctly detected because the 
debris produced from the collapsed roofs is widely distributed in the building footprints and they are 
easily identified by the texture analysis.  On the other hand, about 60% of the latter buildings are 
detected because the debris is distributed in small part or no part of the building roofs.  More 
sophisticated procedure to detect the G5 buildings with partially and undamaged roofs should be 
examined in order to improve the detection accuracy. 
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Fig. 9  Distributions of G5 buildings estimated in this study and damage data 



 
 
 
 
 
 
 
 
 
 
 
5.  CONCLUSIONS 
 
In order to develop a methodology for automatically detecting damaged buildings from satellite 
images, the characteristics of the damaged areas in the high-resolution satellite images observed before 
and after the 2010 Haiti earthquake were examined.  The image texture in and around the collapsed 
buildings was significantly roughed in the post-event image because many debris produced from the 
buildings was observed.  From the image texture analysis based on the gray level co-occurrence 
matrix, the DIS (dissimilarity), one of the texture measures, was identified as better classifier in 
detecting the collapsed buildings.  Based on the ROC analysis, we revealed that the combination of 
the post-event DIS and the difference of DIS between the pre- and post-event images can provide 
more accurate result of the damage detection.  The result showed that about 70% of the collapsed and 
less-damaged buildings were correctly classified by the proposed method. 
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Table 2  Result of accuracy assessment 

G5 G1-G4
Z≧6.6 346 284
Z＜6.6 162 586
Total 508 870

TPR(%) FPR(%)
68.1 32.6

Estimation by
Texture analysis

Building Dmage Data

 


