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SUMMARY: 

Recent researches have shown that the optimal distribution of dampers is sensitive to the choice of the in-structure 

damping models. Common practice is to use the classical viscous damping model originated by Rayleigh, through 

his famous ‘Rayleigh dissipation function’. The main advantage of this model is that the orthogonality of the modes 

is preserved; thereby rendering the classical modal analysis for undamped vibration readily applicable to damped 

vibration as well. In a controlled frame, addition of external dampers makes the damping non-classical and the 

orthogonality of modes no longer exists.  So use of the classical in-structure damping model (Rayleigh model) for 

controlled frames is not convincing and no justification is provided in the literature for the choice of this damping 

model. In this paper, the effect of choice of the damping models on the optimal distribution of dampers is 

investigated. It is observed that the optimal distribution of dampers could change based on the choice of the damping 

models. The results raise a huge concern regarding the realism of the optimality criterion achieved in terms of 

response reduction when a particular damping model is assumed with no specific justification. 
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1. INTRODUCTION 

 

Conventional capacity design strategy relies on the “evasion” of seismic forces by enduring inelastic 

deformations. This philosophy could also be observed as “dissipation with degradation” as seismic energy 

is dissipated by inelastic deformation. Due to the reliance of this philosophy on inelastic deformations, 

this incurs heavy damages to the parent structure making it non-functional mostly after a major seismic 

event. So in order to reduce damage, from a dynamic perspective, a more rational approach would be to 

rely on “dissipation without degradation” rather than “evasion/dissipation” of seismic forces by 

degradation. One way to achieve this is by increasing the amount of damping in the system by adding 

dissipation dampers. So the resultant net damping in the system would be a combination of the inherent 

in-structure damping in the system (mainly due to the material or structural damping) and damping due to 

added dampers. This net damping would be responsible for the reduction of unwanted response during a 

seismic event. 

 

Earlier studies have shown that in order to achieve a reliable performance an optimal distribution of this 

added damping devices is required (Takewaki 2009). More recently, Takewaki (2009) showed that the 

optimal distribution process of this added devices also depends on the inherent in-structure damping in 

the system. The sensitivity study presented illustrated the fact that the distribution of the capacities of 

these added dampers change with the extent of in-structure damping. In analytical terms this means, if the 

in-structure damping model fails to capture the realistic damping in the system, then what seems optimal 

in analysis might not be optimal in reality. This aspect calls for the most significant question “what is the 

most realistic in-structure damping model?” There is no single answer for this particular question as there 



is no single universally accepted model for damping (Woodhouse 1998). This non-acceptance could be 

due to the fact that, to date the state variables controlling the damping force is only known in an ad-hoc 

phenomenological manner (Adhikari 2000). Common practice is to use the classical viscous damping 

model originated by Rayleigh, through his famous ‘Rayleigh dissipation function’, in which only the 

instantaneous velocities are considered as the relevant state variables and on employing Taylor’s 

expansion results in a model which captures the damping through the formation of a ‘dissipation matrix’ 

(Adhikari 2000). Other than mathematical convenience, the adoption of the choice of viscous damping 

model has no relevant explanation in the literature.  

 

Focusing on the uncertainty prevalent in the choice of the in-structure damping model, this paper mainly 

illustrates the effect of different choice of in-structure damping models on the optimal distribution of 

damping devices in terms of response. Two numerical studies are used for the illustration purpose. 

Though no specific conclusions are drawn, our main intention here is to qualitatively highlight the issues 

associated with certain prevalent assumptions regarding the in-structure damping and its effect on the 

optimal distribution of dampers. The paper also presents a brief overview of the in-structure damping 

models existing in literature. 

 

 

2. BRIEF OVERVIEW OF THE MODELS OF DAMPING 

 

This section mainly gives a brief overview of classical and non-classical viscous damping models which 

are used in the numerical studies presented in this paper. To get a detail review on all other models of 

damping interested readers should refer to Banks and Inman (1991), Woodhouse (1998), Adhikari (2000), 

Muravski (2004), Puthanpurayil et al (2011), Smyrou et al (2011). Banks and Inman (1991) deals with 

damping mainly in continuous system whereas all the above referred other papers deal with damping in 

discrete systems. A full state of the art description of the damping is given in DeSilva (2007). 

 

2.1. Classical viscous damping  

 

Viscous damping is mainly achieved by the incorporation of Rayleigh’s Dissipation function given as                                                       
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where ‘C’ represents a non-negative definite symmetric matrix. Rayleigh further demonstrated that one 

way of obtaining the ‘C’ matrix is by a linear combination of the Mass and Stiffness, which is given as,

KMC              (2) 

where  and   are calculated as functions of frequency using a preconceived damping ratio. 

This model is commonly used to model damping in MDOF (Multi-Degree of Freedom) systems and its 

popularity is mainly due to the fact that it uses the already computed mass and stiffness matrices and 

demands only the calculation of the constants  and  (Carr 2007). The main advantage of this theory is 

that the proportionality of the modes is preserved; thereby facilitating the classical modal analysis to be 

performed more or less similar to the un-damped vibration. But there is no explicit justification for the 

preservation of this proportionality phenomenon; and in reality the test results indicate complex nature of 

the eigen modes. This implies non-proportionality of the mode shapes and indicates the presence of non-

classical damping (Adhikari 2000).  



2.2. Non-classical viscous damping 

 

A model in which the damping force is a function of past history of motion via convolution integrals over 

a suitable causal Kernel function constitutes non-classical viscous damping.  They are called non-classical 

viscous because the force depends on state variables other than just the instantaneous velocity (Adhikari 

et al 2003).  The most generic form of linear non-classical viscous damping given in the form of modified 

dissipation function is as follows (Woodhouse 1998, Adhikari 2000): 
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where ( )g t represents the Kernel function and ( )q   represents system velocity.  This could also be 

looked as a time hysteresis model applied to discrete systems.  The generality of this model is evident 

from the aspect that the Kernel function ( )g t  could adopt any causal model where the energy functional is 

non-negative (Adhikari et al 2003).  In literature this is commonly referred to as non-viscous damping 

model (Woodhouse 1998), considering the fact that integration by parts of eq. (3) would result in the 

damping force being expressed as a function of displacement. But considering the fact that damping force 

in its form as given in eq. (3) is a function of velocity, the authors prefer to address the formulation as 

non-classical viscous damping. Incorporating this model, the equation of motion of the system can be 

expressed as: 
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where M is the mass, K the stiffness, ( )f t  the applied force, u  the acceleration,u  the velocity andu  the 

displacement of the system. 

 

 

3. NUMERICAL STUDY 

 

Two optimally controlled shear frames in which the damper capacities are derived using two different 

optimization schemes are used to illustrate the effect of in-structure damping models on the optimal 

distribution of dampers.  Displacement and acceleration responses of these frames predicted using 

different in-structure damping models are compared to qualitatively highlight the effect of different 

damping models.  Damping models used for the study are the classical Rayleigh model and the non-

classical viscous model given by equation (3) as it represents the most general damping model within the 

scope of a linear analysis (Woodhouse 1998).  

 

3.1. Description of the frames 

 

3.1.1. Frame 1 (Frame with uniform Stiffness) 

 

The optimal distribution of dampers derived by Takewaki (1997) in a six storey shear building model is 

used as frame 1 for the study.  The shear building model is shown in Figure 1.  All masses are assumed to 

be lumped at storey levels with m1=m2…..=m6= 0.8x10
5
 kg.  A uniform storey stiffness is assumed with 

k1=k2=………=k6= 4.0x10
7 

N/m.  The optimal damper locations are indicated in Figure 1.  The value of 

the optimal damper coefficients as calculated by Takewaki is as follows: c1= 4.8x10
6
 N-s/m and c2= 

4.2x10
6
 N-s/m.  One fact to be noted is that Takewaki neglected the contribution of the in-structure 



damping while calculating these coefficients.  From our sensitivity analysis point of view, this is ideal 

because the damper coefficient values obtained do not have any contribution from in-structure damping; 

thereby providing us with a flexibility of incorporating different in-structure damping models with 

apparently no significant error.  The undamped frequencies of the uncontrolled frame are recorded in 

Table 1. 

 

 
 

Figure 1 Uncontrolled shear frame building (left) and optimally controlled shear frame building (right) 

 

Table 1 Modal frequencies of frame 1 

Modes 1 2 3 4 5 6 

Frequency (Hz) 0.86 2.52 4.04 5.32 6.30 6.91 

 

 

 
 
Figure 2 Uncontrolled shear frame building (left) and optimally controlled shear frame building (right) (fig. adopted 

from Garcia (2001)) 

 
Table 2 Modal frequencies of frame 2 

Modes 1 2 3 4 5 6 7 

Frequency (Hz) 1.36 3.80 6.20 8.45 9.88 11.34 12.81 

 

 



3.1.2. Frame 2 (Frame with non uniform stiffness) 

 

Gluck et al. (1996) used a seven story shear frame to illustrate their technique of adaptation of optimal 

control theory using the linear quadratic regulator to design linear viscous dampers. The same frame is 

adopted as frame 2 for the present study; it is illustrated in Figure 2. The mass, stiffness and external 

damper properties are described in the figure. A uniform inherent damping ratio of 1% is assumed in the 

original study. Table 2 gives its undamped modal frequencies. 

 

3.2. Description of the ground motions 

 

In order to assess the sensitivity of the optimally controlled frames to different in-structure damping 

models, the controlled frames are subjected to two different ground motions; identified hereafter as the 

Chi-Chi ground motion (from the 1999 Chi-Chi, Taiwan earthquake) and the Sakaria ground motion 

(from the 1999 Izmit Earthquake).  The time history plot and Fourier amplitude spectra of both ground 

motions are presented in Figure 3.  

 

 

 

Figure 3. Acceleration time histories and Fourier amplitude spectra of the Chi-Chi (top) and the Sakaria 

(bottom) ground motion records 

 

Figure 3 (top) shows that the Chi-Chi record has a narrow band spectrum with a predominant frequency 

content of 1.7Hz.  On the other hand, the Sakaria record has a broad band spectrum with Fourier peaks 

occurring between 0.5 and 10 Hz as is evident in Figure 3 (bottom).  

The choice of the ground motion records is made with a focus to excite as many modes as possible.  For 

example, reviewing the modal frequencies given in Table 1 and Table 2, it becomes evident that in the 

case of the Chi-Chi record the predominant excitation is expected to happen in the first 2 modes for both 

frames, whereas the Sakaria record is expected to excite several higher order modes to varying degrees 

for both frames.  As our main intention is only to qualitatively highlight the possible uncertainties arising 

in the response due to the interaction between the inherent in-structure damping of the system and the 
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‘added damping’ supplied by the mechanical dampers, the choice of these two ground motions may be 

deemed to be appropriate. 

3.3. Analysis of the controlled frames 

Direct time integration is performed using the Newmark total equilibrium method (Carr 2007).  

MATLAB codes were developed for the time domain analysis incorporating both classical Rayleigh 

viscous and non-classical viscous damping models.  Linear elastic time domain analysis is performed as 

the optimization schemes employed in deriving the damper capacities is based on the assumption of linear 

elastic behavior of the parent frames.  In the case of non-classical viscous damping, a single exponential 

model called Biot’s relaxation function is used as the Kernel function.  The Biot’s relaxation function is 

of the form 

 

( )
t

g t e





            (5) 

 

where  is a dissipation constant.  A very low value of   indicates strong non-viscous characteristics and 

a high value of  indicates close to viscous characteristics (Adhikari 2000).  Now the interesting question 

is what  values would reflect reality?  At this point of time unfortunately this question remains 

unanswered and demands further research.  In this sensitivity study we use   =1.0, 5.0 and 50.0, based on 

past research evidence (Adhikari, 2000). 

 

4. RESULTS AND DISCUSSION 

 

This section presents the plots of responses in terms of displacement and acceleration of the roof for both 

the frames. The comparisons plotted in the figures can be used to qualitatively investigate the effect of 

different damping models on the responses. 

 

4.1 Chi-Chi ground motion 

 

4.1.1. Frame 1 (Uniform Stiffness) 

 

 
 

(a)                                                           (b) 
Figure 4 Roof displacement histories (a) and Roof acceleration histories (b) of frame 1 due to the Chi-Chi record 

 

Figure 4 shows close views of the displacement and acceleration time history responses (for the first 10 

seconds) of the roof due to the Chi-Chi ground motion with classical viscous damping model and non-

classical viscous damping models with different values of .  The plots show that there is a clear 



distinction between the displacement and acceleration responses obtained using classical viscous and non-

classical viscous models. 

 

Figure 4(a) shows that the peak displacement response for frame with highly non-classical model (

=1.0) is approximately 40-45% more than the frame with classical viscous model.  The responses of other 

models lie in between the classical and non-classical with   =1.0. Figure 4(b) also exhibits a similar 

trend with the peak acceleration response showing an increase of approximately 70% for highly non-

classical model with   =1.0 in comparison to the classical viscous model. 

 

4.1.2. Frame 2 (Variable Stiffness) 

 

Figure 5 illustrates the displacement and acceleration responses of the roof of frame 2 for the Chi-Chi 

earthquake ground motion.  It is evident that the peak displacement and acceleration responses are 

considerably different for the different damping models.  The largest difference is exhibited between the 

highly non-classical viscous model (   =1.0) and the classical viscous model; which is in the order of 50-

55% for the peak displacement and 40-50% for the peak acceleration. 

 

     
(a)                                                                                              (b) 

Figure 5 Roof displacement histories (a) and Roof acceleration histories (b) of frame 1 due to the Chi-Chi record 

 

4.2 Sakaria ground motion 

 

4.2.1. Frame 1 (Uniform Stiffness) 

 

       
 

Figure 6 Displacement (left) and acceleration histories (right) of frame 1 roof due to the Sakaria ground motion 

 



Figure 6 shows the displacement and acceleration time history responses of the roof of frame 1 for the 

Sakaria ground motion with classical viscous and non-classical viscous damping models.  In comparison 

with the classical viscous model, the non-classical model with   =1.0 shows approximately 80-90% 

increase in the peak displacement response and approximately 50% increase in the peak acceleration 

response. 

 

4.2.2. Frame 2 (Variable Stiffness) 

 

Figure 7 depicts the variations of the displacement and acceleration responses of the roof of frame 2 when 

subjected to the Sakaria ground motion. Compared to classical model, the highly non-classical model (  

=1.0) results in approximately 80% increase in the peak displacement and close to 50% increase in the 

peak acceleration.  

 

 
 

Figure 7 Displacement (left) and acceleration histories (right) of frame 2 roof due to the Sakaria ground motion 

 

4.3 Discussions 

 

From the results presented in the previous section it is important to note that the extent of effect the 

assumed damping model has on the responses of the two frames is different for the two different ground 

motions considered. Earthquakes are inherently uncertain phenomena with no human control, and so are 

the resulting ground motions at a site of interest. The aim of an analysis dealing with seismic actions 

should hence be to get a reliable prediction by reducing uncertainty, which renders the use of a more 

consistent and realistic damping model imperative. This raises the same question again; “What is the most 

realistic model of damping?” 

 

Unfortunately, very little is known about realistic structural damping. Free vibration testing of real 

buildings indicates that the damping in the first mode, though not purely viscous, is very close to viscous 

and it could be said that  =50.0 represents a realistic behavior, at least in the first mode. Our intention in 

plotting the highly non-classical viscous ( =1.0) and close to viscous (  =50.0) is to highlight this 

inherent variability existing in the modeling. There are other models such as the frequency independent 

damping model (Muravski 2004)) which would again give an entirely different set of responses.  

 

The comparison of the two frame responses presented earlier provides a qualitative indication of the 

extent of effect different damping models can make on the predicted structural response. The interesting 

aspect to be noted in the above analytical results is that the differences exhibited in the predicted 

responses are rather large, and can have major implications on the adequacy of the structures designed 

based on these predictions.  For example, if for argument sake non-classical damping with   =1.0 is 

considered as representing the actual in-structure damping, from the results presented above it becomes 

evident that in some cases although the actual frame response would enter inelastic phase; but the analysis 



using classical model will not predict this. The analysis could suggest the structure in likely to remain 

elastic when in reality the structure should have been designed and detailed for inelastic response. Similar 

observations has been recorded in earlier studies (Val & Segal, 2005) in which it is found that there would 

be instances when the classical viscous damping assumption would underestimate the peak deflection and 

fail to capture the occurrence of nonlinearity in the parent frame. Similarly the underestimation of the 

floor acceleration by the classical damping model can result in underestimation of demands for 

acceleration sensitive non-structural components and contents. 

 

All these observations raise a question on the so-called optimality obtained by ignoring the inherent 

variability in the in-structure damping models, because what is optimal in one analysis using a specific 

damping model might not be optimal in terms of response if we use a different damping model.  

 

 

5. CONCLUSIONS 

 

The significance of the correct choice of realistic in-structure damping model is qualitatively illustrated 

with the help of comparative sensitivity studies on controlled frames. Classical and non-classical viscous 

damping models are used for the study. It is observed that different damping models give different 

responses highlighting the need for a realistic representation of the in-structure damping to achieve more 

reliability in response prediction. It is also shown that an un-realistic damping model might underestimate 

the peak responses and thereby affect the so-called optimality achieved. Though no specific conclusion is 

drawn, the need for the use of a more generic damping model is emphasized. It has also been highlighted 

that the extent of the effect of these different models on the response of a system is an area which 

demands further research. 
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