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SUMMARY: 
This study verifies the applicability of a newly developed transform method to soil-foundation systems under 
practical conditions. With this method, the impedance function of linearly elastic systems with non-classical 
damping can be transformed based on conventional complex modal analysis into an exact one-dimensional 
spring-dashpot system (1DSD) arranged in series. In this study, the horizontal and rocking impedance functions 
of a shallow foundation embedded in layered soil modeled by finite element models are transformed into the 
1DSDs. Numerical results show that the dynamic response of a four-story structure with inelasticity supported 
by the 1DSDs is compatible with that supported by the finite element models. The results also show that a 
marked decrease in the computational domain size and time can be achieved by using the transform method. 
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1. INTRODUCTION 
 
In general, impedance functions (IFs) show frequency-dependent characteristics, such as when the soil 
deposit has layered strata, or the shape and structure of the foundations are complicated. It is known 
that IFs show the following typical frequency-dependent characteristics: (a) slight oscillation shown in 
soil reaction and surface rigid foundations or embedded rigid foundations (e.g. Baranov, 1967; 
Beredugo & Novak, 1972; Novak, 1974; Novak et al., 1978; Veletsos and Dotson, 1988; Gazetas, 
1991; Saitoh, 2004); (b) multiple oscillations typically exhibited in pile groups (e.g. Kaynia & Kausel, 
1982, Makris & Gazetas, 1993; Mylonakis & Gazetas, 1998); and (c) cut-off frequency below which 
the damping is negligible and above which the damping increases rapidly (e.g. Novak & Nogami, 
1977; Kausel & Roesset, 1975; Elsabee & Morray, 1977; Takemiya & Yamada, 1981). On the one 
hand, a number of constitutive models of materials and structural members have been proposed, 
allowing the inelastic behavior of structural systems during earthquakes to be estimated appropriately. 
Recently, various methods that are ready to use in practice have been proposed to consider the 
frequency dependent IFs into the inelastic structural analysis. One of the powerful tools is to use a 
lumped parameter model (LPM). An LPM consists of springs, dashpots, and masses having 
frequency-independent coefficients. A particular combination of these elements can simulate a 
frequency-dependent impedance characteristic. The advantage of LPMs is that they can be easily 
incorporated into a conventional numerical analysis in the time domain, even under nonlinear 
conditions of superstructures. From the viewpoint of construction schemes in LPMs, the existing 
LPMs can be categorized into three types: a) semi-empirical LPMs (e.g. Meek & Veletsos, 1974; Wolf 
& Somaini, 1986; de Barros & Luco, 1990; Jean et al., 1990; Wolf & Paronesso, 1992; Wolf, 1997; 
Wu & Chen, 2001; Wu & Chen, 2002; Saitoh, 2007; Taherzadeh, 2009; Khodabakhshi, 2011); b) 
systematic LPMs (e.g. Wolf, 1991a and 1991b; Wu & Lee, 2002; Wu & Lee, 2004; Zhao & Du, 
2008); and c) modal LPMs (Saitoh, 2010 and 2012a).  
 
In general, LPMs need to approximate the target IFs by using specific functions. This approximation 
procedure does not always achieve a satisfactorily good match with the target IFs. Recently, a new 



transform method, which is categorized as modal LPMs, for constructing an exact LPM from the 
original systems has been developed in the field of computational mechanics (Saitoh, 2010). In this 
method, the IF in general linearly elastic systems with non-classical damping is transformed on the 
basis of a conventional complex modal analysis into an exact one-dimensional spring-dashpot system 
(1DSD) comprising units arranged in series. Each unit, which is directly related to each vibrating 
mode of the original system, is a parallel system consisting of a spring, a dashpot, and a unit having a 
spring and a dashpot arranged in series. The properties of the elements comprising the 1DSDs are 
automatically determined through the proposed procedure by using complex modal quantities. 
Furthermore, a transform method for the IF in general linearly elastic systems with classical damping 
was also proposed by Saitoh, 2012a.  
 
The advantage of 1DSDs is that the 1DSD transformation offers compatibility with the merit of 
complex modal analysis: a large number of units associated with high modes beyond a target 
frequency region can be removed from the 1DSDs as an approximate expression of IFs. Accordingly, 
a marked decrease in the computational domain size and time with the use of the 1DSDs can be 
achieved. The 1DSDs transform procedure provides an exact LPM at the initial step: we can adjust the 
number of degrees of freedom (the number of units) in the reduced LPM by taking a balance with the 
accuracy from the exact LPM. 
 
The main aim of this study is to verify the applicability of the transform method of 1DSDs to 
soil-foundation systems under practical conditions. This study deals with an application example of a 
shallow foundation embedded in layered soil resting on rigid bedrock. An adjacent building and an 
underground structure such as a tunnel are considered in layered soil as practical conditions. The 
soil-foundation system is modelled using two-dimensional isoparametric finite elements. 
 
 
2. SYSTEM STUDIED 
 
The total system is shown in Fig. 1. A shallow foundation of width 10m, length 50m, and depth 2m is 
embedded in layered soil up to the middle height of the foundation. The elastic modulus of the 
foundation is assumed to be rigid, imposing unique displacements fu  and fθ  at the centre of 
gravity in the horizontal and rotational directions, respectively. The mass and the mass moment of 
inertia of the foundation are 1000=fm t and 8500=fJ tm2, respectively. A four-storey building 
supported by the foundation is represented by a four-degree-of-freedom system. In this study, the 
inelasticity in each story is taken into account. The soil-foundation system is modelled using 
conventional two-dimensional rectangular isoparametric elements, where each element has eight 
degrees of freedom. The soil strata consist of two soil layers resting on rigid bedrock. The bottom of 
the layered soil is fixed in the vertical and lateral directions, whereas viscous boundary proposed by 
Lysmer and Kuhlemeyer, 1969 is applied to the sidewalls of the soil as a fictitious boundary that 
dissipates energy toward infinite region of soil. The moduli of elasticity and the damping ratios of the 
soils shown in the figure are assumed to approximately account for appreciable levels of strain during 
ground shaking. As adjacent structures, a six-story building with the height of 16m and the bay of 
10m; and a tunnel with the height of 5m and the width of 8m are modelled by using the isoparametric 
elements. The unit weight, the modulus of elasticity, and Poisson’s ratio of the elements for the 
adjacent structures are 5.2=cρ t/m3, 7105.2 ×=cE kN/m2, and 25.0=cν respectively. The total 
numbers of nodes comprising the isoparametric elements for the total system are 1707, whereas the 
degrees of freedom subtracting the fixed degrees of freedom are 4074. The thickness of the elements is 
the same as the length of the foundation (50m) under the plane-strain condition. 
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Figure 1. Two-dimensional finite element model for soil and shallow foundation system supporting a four-storey 
building. The unit weight, the modulus of elasticity, Poisson’s ratio, and the damping ratio of the i-th soil layer 

are denoted as wi, Ei,νi, and ζi, respectively. 
 
In this model, the soil-foundation system consists of conventional isotropic elements, whereas the 
structural system comprising the superstructure and the mass of the foundation are discretized by 
springs, dashpots, and masses. Therefore, the global mass matrix, stiffness matrix, and damping matrix 
in the equations of motion of the total system are obtained by superimposing local matrices in both 
equilibrium equations. 
 
 
3. TRANSFORMING ORIGINAL SOIL-FOUNDATION SYSTEM INTO 1DSD 
 
3.1. Overview of Transform Method (Saitoh, 2010, 2012b) 
 
In this method, the equations of motion of general linearly-elastic structural systems comprising N  
DOFs are considered and are expressed by the following form: 
 
[ ]{ } [ ]{ } [ ]{ } { }puKuCuM =++ &&&                                                                 (3.1) 
 
where [ ]M , [ ]C , and [ ]K  are the mass matrix, damping matrix and stiffness matrix respectively, 
of the original structural systems. Each matrix has the order NN × ; { }u  and { }p  are the response 
displacements and the external forces at the nodes, respectively, and each vector has the order N . 
The dots denote partial derivatives with respect to time t . In this study, the damping matrix [ ]C  is 
assumed to be based on non-classical damping. 

In complex modal analysis, the following N2  first-order equations are considered instead of N  
second-order equations of Eqn. 3.1: 
 
[ ]{ } [ ]{ } { }fzSzR =+&                                                                           (3.2) 
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According to the conventional complex modal procedure, the complex eigenvalues and eigenvectors 
can be obtained. Each complex eigenvalue nλ  is known to have an eigenvalue nλ  that is the 
complex conjugate of nλ ; the corresponding vector { }nφ  has a vector { }nφ  whose components are 
complex conjugates of those of { }nφ . The eigenvectors are assembled compactly into a matrix using 
diagonal matrices [ ]Ω  and [ ]Ω  comprising the eigenvalues nλ  and nλ , respectively, as 
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where 
 
[ ] { } { } { }[ ]Nφφφφ L21=                                                                   (3.4) 

 
[ ] { } { } { }[ ]Nφφφφ L21=                                                                    (3.5) 

 
[ ] [ ]ndiag λ=Ω , Nn ,,2,1 L=                                                                (3.6) 

 

[ ] [ ]ndiag λ=Ω , Nn ,,2,1 L=                                                                (3.7) 
 
The matrix [ ]Ψ  is called the modal matrix. In general, [ ] [ ][ ]ΨΨ RT  becomes a diagonal matrix 
owing to the orthogonality relations. Here, the upper N components of the matrix are denoted as nα , 
whereas the lower N components are complex conjugates of nα , denoted as nα . 
 
At the end of the mathematical derivation in his study (Saitoh, 2010), the configuration of 1DSD was 
theoretically determined as shown in Fig. 2. Moreover, the properties of the elements comprising 
1DSD can be determined using the following formula: 
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Here, nIφ  and nJφ  are the components of the n -th eigenvector at the I-th and J-th DOFs, 
respectively; nIφ  and nJφ  are the complex conjugates of the components nIφ  and nJφ , 
respectively. nσ  is the n -th modal decay rate and dnω  is the n -th damped natural circular 
frequency defined as 
 



dnnn iωσλ +−=                                                               (3.12) 
 

dnnn iωσλ −−=                                                               (3.13) 
 

Practically, over-damped modes often appear. In this case, eigenvalues nλ  are real and negative. In 
Saitoh, 2010, it was mathematically derived that the impedance function associated with over-damped 
modes is expressed as a Kelvin-Voigt unit comprising the following spring Tnk and dashpot Tnc  
shown in Fig. 2. 
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Note that over-damped modes generally appear with even numbers m2  in N2  modes, so the total 
unit number N  changes to ( )mNN +=′  when over-damped modes exist. 
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Figure 2. (a) One-dimensional lumped parameter model with spring and dashpot elements (1DSDs) for 

simulating the impedance function ( ) IJIJ upS =ω  in general structural systems. (b) Unit associated with 
under-damped mode and (c) unit associated with over-damped mode, proposed by Saitoh, 2010. 

 
 
3.2. 1DSD Transformation of FEmodel 
 
According to the procedure shown above, the FEmodel is to be transformed into an equivalent 1DSD 
hereinafter. First of all, complex modal analysis is performed to obtain the fundamental quantities by 
which the properties of the elements in the 1DSD are determined. As described above, a great 
advantage of the 1DSDs is that the units comprising the 1DSDs are associated with the vibration 
modes of the original structural system. Therefore, a small set of units associated with modes from the 
lowest order can appropriately express the dynamic characteristics of structural systems without using 
all the units. In recent study, Saitoh, 2012c studied the influence of frequency dependency in 
pile-group impedance functions upon elastic and inelastic responses of superstructures. The results 
indicate that the important frequency range is the dominant frequency of foundation input motions that 
excite the inertial structural systems. Fig. 3 shows the time-history response acceleration at the ground 
surface calculated by using conventional one-dimensional wave propagation theory with the soil 
properties shown in Fig. 3. An observed earthquake record, 1940 El Centro NS is applied to the 
bottom soil layer. This response acceleration is to be used in the following calculations as the 
foundation input motion in this study, which indicates that no adjustment for the kinematic interaction 
effects is conducted for simplicity. The figure shows that the foundation input motion contains a wide 
range of frequency components. The amplitude of the acceleration ranges from 0Hz to 10Hz. So, this 
frequency range is considered to be the target frequency range in this study. 
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Figure 3. Fourier amplitude and time-history of the input motion applied to structural system. 
 
Fig. 4 shows a comparison of the impedance functions obtained from 1DSDs with those obtained with 
the FEmodel. The results indicate that the impedance functions obtained from the 1DSDs agree 
closely with those obtained with the FEmodel within the target frequency range. In 1DSD 
transformation, many units contain relatively much larger spring constant than others. These units can 
appreciably be removed so that the impedance functions of the reduced 1DSD are in sufficient 
agreement with those of the original system. In this study, the reduced 1DSD for the horizontal 
impedance functions consists of 411 units (148 under-damped modes and 263 over-damped modes), 
whereas the reduced 1DSD for the rotational impedance functions consists of 83 units (69 
under-damped modes and 14 over-damped modes). The 1DSDs in the horizontal and rotational 
directions contain the residual stiffness units representing the stiffness effect above 40Hz and 30Hz, 
respectively (c.f. Saitoh, 2012c). 
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Figure 4. Impedance functions of soil and shallow foundation system using reduced 1DSDs [ hhK  in 
horizontal direction and rrK  in rotational direction]. Results obtained from the original FEmodel are 

shown for comparison. 
 
 
 
 
 



4. PERFORMANCE VERIFICATION OF 1DSD 
 
4.1. Dynamic Response of the Structural System in Frequency Domain 
 
In this section, the dynamic response of the structural system computed by using the reduced 1DSDs 
in the frequency domain is verified by comparing it with the dynamic response obtained with the 
original FEmodel. The total structural system using the 1DSDs in both horizontal and rotational 
directions is shown in Fig. 5. The properties of the superstructure are summarized in Table.1. The 
reduced 1DSDs obtained above are connected respectively with each degree of freedom in the 
foundation as shown in the figure. The equations of motion of the structural system can easily be 
constructed with conventional spring-dashpot matrices expressing the reduced 1DSDs (details are 
described in Saitoh, 2012a). The resultant equilibrium equations of the total system can be formulated 
as: 
 
[ ]{ } [ ]{ } [ ]{ } { }0=++ uKuCuM TTT &&&                                                  (4.1) 
 
where 
 
{ } [ ] T
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where the mass matrix [ ]TM , the damping matrix [ ]TC , and the stiffness matrix [ ]TK  are the 
resultant matrices formed by superimposing the partial matrices. iu  and iθ  are the displacements at 
the degrees of freedom in the reduced 1DSDs. m  (=559) and n  (=152) are the maximum degrees 
of freedom in both directions, respectively.  
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Figure 5. Mathematical models for non-linear response history analysis (Saitoh, 2012b) 
 
 
 

Table 1. Properties of Four-Storey Building 
Story No. Units 1 2 3 4 
Mass mi t 750 750 750 750

Stiffness ki kN/m 2000000 2000000 2000000 2000000
Height Hi m 12 9 6 3

Yield Strength pi kN 5000 10000 11000 14000  



 
Fig. 6 shows the real part and imaginary part of the transfer functions (TFs) of the structural systems 
(the inelasticity in the superstructure is not considered here). Here, the TF of the absolute acceleration 
at the top of the superstructure with respect to the foundation input motion is defined as saT . 
Furthermore, the TFs of the footing are also computed. They are defined as haT  and raT  for the 
absolute acceleration associated with the horizontal and rotational motions, respectively. The figure 
shows that the TFs obtained with the reduced 1DSDs are in good agreement with those of the original 
FEmodel. This implies that the 1DSDs comprising almost 17% of the degrees of freedom in the 
original system can properly represent the IFs and the TFs in the target frequency region. 
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Figure 6. Comparisons of the transfer functions of the structural system computed by using 1DSDs and original 
FEmodel [real part and imaginary part]. 

 
4.2. Dynamic Response of the Structural System with Inelasticity in Time Domain 
 
In this part, it is attempted to compute the time-history response of the structural system with the 
inelasticity in the superstructure employing the 1DSDs when subjected to the foundation input motion 
shown in Fig. 3 and to be compared with that with the original FEmodel. 
 
Time-history analysis is performed by using Newmark’s β  method ( 41=β ) as a numerical 
integration scheme, where the time interval tΔ  is 001.0 s. The inelasticity of the superstructure is 
assumed to be the Clough model (Clough & Johnson, 1966), which is generally used to model 
reinforced concrete members. The spring of the superstructure has a bi-linear skeleton curve where the 
ratio of the tangent stiffness to the initial stiffness is assumed to be 0.1, as shown in Fig. 5. The yield 
strength ip  in each story is presented in Table.1. In this study, the modified Newton–Raphson 
method is applied to calculate the nonlinear response of the system. 
 
Fig. 7 shows shear force and inter-storey drift relation in each story. The results indicate that the 
inelastic responses obtained with the 1DSDs show sufficiently close agreement with those obtained 
from the original FEmodel. According to a rough measurement, when using the authors’ PC (CPU 
3.40GHz, RAM 4.00GB), the inelastic responses shown above were obtained in about 36000sec with 
the original system, while those with the 1DSDs were obtained in about 300sec. Therefore, the 1DSD 
transform method can be a new option for efficient computation in SSI problems. 
 
 
5. CONCLUSIONS  
 
This study verifies the applicability of the transform method using a so called “one-dimensional 
spring-dashpot system (1DSD)” to soil-foundation systems under practical conditions. This study 
deals with an application example of a multi-story building supported by a shallow foundation 
embedded in layered soil resting on rigid bedrock. An adjacent building and an underground structure 



such as a tunnel are considered in layered soil as practical conditions. The impedance functions 
obtained with the 1DSDs properly simulates those with the original FEmodel. The transfer functions 
of the structural systems in the frequency domain using the 1DSD show fairly good agreement with 
those obtained with the FEmodel. The time-history responses of structures with the inelasticity in the 
superstructure are properly simulated by using the 1DSDs. The results indicate that the 1DSDs 
markedly decreases the computational time taken for the results. Therefore, it may be concluded that 
the 1DSD transformation is effective and efficient for the numerical computation in SSI problems 
under practical conditions. 
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Figure 7. Shear force and inter-storey drift relation in each story when subjected to ground motion associated 
with 1940 El Centro NS by using 1DSDs and the original FEmodel. 
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