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ABSTRACT: 
This paper presents a coupled FEM-SBFEM approach for the dynamic SSI analysis considering the nonlinearity 
in the near-field. In order to model the soil nonlinearity, basic HiSS-δ0 model is used. The implementation of 
HiSS model in the developed MATLAB program is verified by solving the problem from literature. A problem 
of an elastic half-space under dynamic load was analyzed to show the importance of radiation damping in SSI 
analysis. An incremental calculation scheme for dynamic analysis is presented wherein the nonlinear HHT-α 
method with full Newton-Raphson iteration is employed for numerical integration. 
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1. INTRODUCTION 
 
The direct method and the sub-structure method are the two major methods available for the dynamic 
soil-structure interaction (SSI) analysis (Wolf 1985). In the sub-structure method of dynamic SSI 
analysis, the model consists of a bounded irregular soil domain (near-field) and an unbounded regular 
soil domain (far-field) separated by an interface called the interaction horizon (Fig. 1.1). The near-
field is discretaized using finite element method (FEM) and can incorporate all irregularities including 
geometrical and material nonlinearities. The dynamic property of far-field, which is always assumed 
to be linear, can be represented by the force-displacement relationship formulated on the interaction 
horizon which satisfies the radiation condition at infinity.  
 
Global procedures such as boundary element method (BEM) (Hall and Oliveto 2003), thin layer 
method (Kausel 1994), consistent infinitesimal finite-element cell method (CIFECM) (Wolf and Song 
1996, Emani and Maheshwari 2009) and scaled boundary finite element method (SBFEM) (Wolf 
2003) are employed for modeling the unbounded soil domain. These global procedures are rigorous in 
the sense that the response at a specific location and time depends on the response at all other locations 
(spatially global) and at all previous times from the start of the excitation onward (temporally global). 
In the present work, the SBFEM is used to model the unbounded soil domain.  
 
Wolf (2003) has developed the SBFEM for the dynamic analysis of unbounded domains, taking the 
advantages of both the FEM and the BEM approaches and evading their respective drawbacks. 
Combined models based on coupling of FEM-SBFEM (Wolf and Song 2000, Bazyar and Song 2006 
etc.) have also been proposed for dynamic SSI analysis. 
 
Most of the coupled FEM-SBFEM models for the dynamic SSI analysis include only linear behavior 
of the near-field. However, Doherty and Deeks (2005) applied adaptive coupling of the FEM-SBFEM 
interface considering nonlinearity in the near-field in the form of an ideal elastic-plastic Tresca 
material. Bransch and Lehmann (2011) employed the elastic-plastic cap model given by DiMaggio 
and Sandler (1971) in the coupled FEM-SBFEM approach to model the nonlinearity in the near-field.  
 



Although the cap model has been used in the characterization of materials that exhibit continuous 
yielding, they suffer certain limitations in handling number of important attributes of the behavior of 
materials such as non-associative response of many frictional materials (Desai 2001). The hierarchical 
single-surface (HiSS) plasticity models provide a general formulation for the elastoplastic 
characterization of the material behavior. They provide hierarchical adoption of models of increasing 
sophistication, say, linear elastic to nonassociated elastoplastic to elastoplastic with softening. In the 
present work, the basic and simplest version of the HiSS models, the HiSS-δ0, which allows for 
isotropic hardening and associated response, has been used in the dynamic SSI analysis carried out 
using FEM-SBFEM approach. 
 

 
 

Figure 1.1. Model for soil-structure interaction 
 
2. FEM-SBFEM COUPLING IN TIME DOMAIN 
 
A detailed description of SBFEM is given in Wolf (2003). In the present section, the coupling 
procedure of the two numerical methods viz. FEM and SBFEM is discussed.  
 
The equation of motion of the structure in total displacements in time domain for the soil-structure 
system is formulated as (Wolf 1985) 
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where [M], [C] and [K] are mass, material damping and stiffness matrices, respectively; tu , tu and 

tu are displacement, velocity and acceleration vectors, respectively. The subscripts s and b denote the 
nodes of the bounded domain and nodes associated with the interface, respectively and the superscript 
t denotes the total motion of the structure. The ground interaction force vector, t

bR , is obtained solving 
the convolution integral (Lehmann 2005) 
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where ∞

bbM  is the acceleration unit-impulse response matrix in the time domain. Its derivation is 
discussed in Wolf and Song (1996). 
 
 
 
 



The convolution integral in Eqn. 2.2 can be written in the discrete form as: 
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When the α-parameter of the HHT- α method (Hilber et al. 1977) is introduced and the unknown 
acceleration vector nu for the time step n is separated, the interaction force )(tR is calculated with: 
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R̂  relates to the loads on the near-field/far-field interface which occur at the infinite domain. 
Substituting Eqn. 2.4 into Eq. 2.1, the coupling of FEM and SBFEM is done as 
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Eqn. 2.5 represents the coupled FEM-SBFEM calculation.  For a long simulation time, the calculation 
of Eqn. 2.5 needs a large computational effort. To reduce this computational effort, a recursive 
algorithm (Lehmann 2005) has been implemented in the present work. 
 
 
3. IMPLEMENTATION OF FEM-SBFEM COUPLING FOR ELASTIC HALF-SPACE 
 
The verification of the coupled FEM-SBFEM approach for the dynamic SSI analysis for plane strain 
problems and three dimensional problems has been presented in Syed and Maheshwari (2011) and 
Maheshwari and Syed (2011), respectively. Doherty and Deeks (2003) presented the formulation of 
SBFEM for axisymmetric problems. Here, the FEM-SBFEM coupling is employed to study the 
axisymmetric problem of elastic half-space under dynamic load. Fig. 3.1 shows the investigated 
geometry, its discretization and the applied load. The number of four-node plane elements used in FE 
discretization is 40 whereas the total degrees of freedom in the system is 108. The total number of 
SBFE is 18 with a total number of 38 degrees of freedom. The unit weight considered is 1800 kg/m3, 
Poisson’s ratio value is 0.35 and shear-wave velocity is 200 m/s. The results from the dynamic 
analysis with FEM-SBFEM approach is compared with those with the FEM analysis wherein the 
boundary nodes are fixed in all the directions. No material damping is considered in order to highlight 
the effect of radiation damping present in the FEM-SBFEM analysis.  
 

 
 

Figure 3.1.Elastic half-space: (a) SBFEM discretization (b) FEM discretization and (c) Step-load 
 



 
 

Figure 3.2. Vertical response at one of the loaded nodes 
 
In Fig. 3.2, the time histories of the vertical response at one of the loaded nodes are plotted. As evident 
from the figure, in case of FEM-SBFEM approach, the displacement almost vanishes after 0.8 s, 
clearly highlighting the effects of radiation damping. On the other hand, in the FEM analysis with 
fixed boundary, the vibrations continue without any diminution since the system considered is an 
undamped system and there is no radiation damping present. 
 
 
4. NONLINEARITY OF SOIL: HiSS-δ0 MODEL  
 
The HiSS model presented by Desai (2001), is used in the present study. The yield function, F (Fig. 
4.1), is given by 
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Here, DJ 2 and 1J  are respectively the second and first invariants of the stress deviators, 
nondimensionalised with respect to atmospheric pressure pa. The quantities α (different from the 
parameter α of HHT- α method), γ, β, and n are material constants that can be determined form the 
laboratory tests. The parameters γ and β are associated with the ultimate yield envelope, n is associated 
with the phase change from contractive to dilative or zero volume change, and α is the hardening or 
growth function, which is expressed as a function of the plastic strain trajectory ξ. A simple form of α 
is given by 
 

ηξα /1a=                                                                                                                     (4.2) 
 
where a1 and η are the hardening constants. The plastic strain trajectory ξ is composed of the 
deviatoric plastic strain trajectory ξD and volumetric plastic strain trajectory ξv. The value of m = -0.5 
is often used. Sr is the stress ratio. In case of nonassociative HiSS-δ1 model, two additional parameters 
κ1 and κ2, which allow for the correction (deviation from normality) with respect to δ0 model are 
required. The notations of the Eqn. 4.1 are adopted from Desai (2001), and the detailed description 
about the material constants and their determination are discussed therein. 



 
(a)                                                                        (b)  

 
Figure 4.1. HiSS yield surface in (a) J1-(J2D) 1/2 plane and (b) octahedral plane (After Desai 2001) 

 
 
5. VALIDATION OF THE ALGORITHM FOR HiSS MODEL 
 
A finite element program in MATLAB is developed for coupled FEM-SBFEM scheme for time-
domain analysis of dynamic SSI problems, considering the HiSS-δ0 nonlinearity in the near-field 
region. In this section, the developed program for the implemented HiSS model in the FEM analysis is 
verified.  
 
Along with the basic HiSS-δ0 model, the HiSS-δ1 is also implemented in the developed program and 
the same is used to verify the problem in literature. A two-dimensional axisymmetric problem 
subjected to the increments of axial displacements in the vertical direction is analyzed using the mesh 
and boundary conditions shown in Fig. 5.1. The material and model constants used in the problem are 
listed in Table 5.1. 
 
Table 5.1. Material and Model Constants 
Elastic constants  Young’s Modulus E = 103841.9 kPa, Poisson’s ratio ν = 0.291 
Ultimate constants  m = -0.5, γ = 0.089, β = 0.442 
Phase change constants n = 3.0  
Hardening constants a1 = 0.18x 10-3, η = 0.85 
Non-associative constants κ1 = 0.2637, κ2 = -0.037 

 

 
 

Figure 5.1. Mesh and boundary conditions 
 



Nodes 6, 7 and 8 are subjected to downward vertical displacements and zero horizontal displacements. 
The incremental displacement value is 0.0508 mm with a total applied displacement value of 0.508 
mm in 10 numbers of steps. A hydrostatic in situ stress equal to 137.90 kPa is also applied. Since the 
results obtained are same for all the four Gauss points, they are reported in Table 5.2 for only one 
Gauss point.  
 
As evident from Table 5.2, the stresses values obtained using the developed program are exactly the 
same as with those given by Desai et al. (1991). This verifies the developed MATLAB algorithm. 
 
Table 5.2. Stresses at a Gauss Point 

Total downward 
vertical 

displacements at 
nodes 6, 7, and 8 

(mm) 

Stresses at a Gauss point (kPa) 
(Desai et al. 1991) 

Stresses at a Gauss point (kPa) 
(Present study) 

σx= σz  σy σx= σz σy 

0.002 128.0294 193.0373 128.0294 193.0373 
0.004 127.0200 225.7874 127.0200 225.7874 
0.006 137.3732 255.5252 127.0200 255.5252 
0.008 150.8517 285.0644 150.8517 285.0644 
0.010 164.5778 314.2533 164.5778 314.2533 
0.012 177.9047 343.0162 177.9047 343.0162 
0.014 190.7096 371.3447 190.7096 371.3447 
0.016 202.9926 399.2498 202.9926 399.2498 
0.018 214.7806 426.7468 214.7806 426.7468 
0.020 226.1059 453.8494 226.1059 453.8494 

 
 
6. TIME INTEGRATION FOR FINITE ELEMENT EQUATIONS  
 
Lehmann (2005) used HHT-α method in the coupled FEM-SBFEM formulation for the dynamic SSI 
analysis. The nonlinear description for the HHT-α method with modified Newton-Raphson iteration, 
given in Crisfield (1997), was extended by Bransch and Lehmann (2011) for the full Newton-Raphson 
iteration. In full Newton-Raphson iteration, the stiffness of the system under consideration is modified 
at the beginning of each iteration, which can be expensive computationally. To overcome this 
difficulty, the modified Newton-Raphson iteration can be used, wherein the initial stiffness matrix is 
kept constant throughout the analysis. However, for highly nonlinear problems, the modified Newton-
Raphson iteration can cause convergence problems and may require very large iterations for 
convergence. With the full Newton-Raphson iteration, better convergence can be achieved even with a 
larger time step than the modified Newton-Raphson iteration. The detailed discussion of the new 
nonlinear HHT- α formulation with full Newton-Raphson iteration and the involved equations, can be 
found in Bransch and Lehmann (2011). Moreover, the algorithm for the implementation of HiSS 
model can be found in Desai et al. (1991). The algorithm for nonlinear HHT- α formulation with full 
Newton-Raphson iteration in FEM-SBFEM approach and considering the HiSS constitutive model for 
modeling the soil in near-field is being developed. Further, the same will be extended considering 
DSC (Disturbed State Concept) model to deal with soil liquefaction.   
 
 
7. CONCLUSION 
 
In the present work, a coupled FEM-SBFEM approach for the nonlinear dynamic SSI analysis is 
discussed. The nonlinearity of soil is modelled using HiSS constitutive model. A problem from 
literature is analysed for the verification of the algorithm developed. Also, an axisymmetric problem 
of an elastic half-space under dynamic load was studied. The results highlight the importance of 
radiation damping in the SSI analysis. The present approach can be used in the dynamic SSI analysis 
of highly nonlinear problems, since the full Newton-Raphson iteration is considered in the nonlinear 
HHT-α method of integration. The algorithm is being extended to deal with soil liquefaction. 
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