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SUMMARY:  
The conditional mean spectrum (CMS) has been recently proposed as an alternative to the uniform hazard 
spectrum (UHS) to be employed as a target spectrum in ground motion record selection. The CMS provides the 
expected response spectrum, conditioned on occurrence of a target spectral acceleration value at the period of 
interest. A robust regression analysis is proposed in this manuscript to improve the current CMS which is based 
on a conventional regression analysis. The results show that the proposed robust CMS significantly differs from 
the conventional CMS, especially for higher interest periods. The shape of the robust CMS represents the rare 
ground motions in a more reliable manner, comparing with the conventional CMS. 
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1. INTRODUCTION  
 
The assessment of structural seismic response is often done by selecting ground motion records that 
conforms to the seismic hazard conditions of the objective site which can be obtained based on the 
probabilistic seismic hazard analysis (PSHA). A common record-selection practice (e.g., ASCE7-05 
2005) suggests selecting seven records which are compatible with the dominant earthquake scenario 
in a given site. This dominant scenario is represented with two key parameters magnitude (Mw), and 
the distance (R) which can be obtained by disaggregation analysis (Bazzurro and cornell 1999). The 
selected records are then scaled (if necessary) to match the design level of the uniform hazard 
spectrum (UHS). Both the UHS and the disaggregation analysis are outputs of PSHA and can be 
determined for any desired level of hazard such as 10% or 2% probability of exceedance in 50 years. 
 
The UHS for any desired level of hazard at the mentioned site is defined as 
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where μlnSa(Ti) is the natural logarithm of the expected spectral acceleration at the given period Ti and 
μlnSA and σlnSa are the predicted median and standard deviation values obtained from the ground 
motion prediction model for the dominant event. The UHS remains at a constant ε standard deviation 
from the median response spectrum at all periods. Considering a high positive ε value, the UHS 
represents an expected ground motion spectrum that all of its points take simultaneously rare values. 
This issue is in a significant conflict with the nature of real ground motion records (e.g., Haselton et 
al. 2011). The rate of observing a high positive ε at all periods is much lower than the rate of 
observing a high ε at any single period. Thus it can be concluded that the UHS represents a nearly 
impossible earthquake scenario, especially in higher levels of hazard (Baker and Cornell 2006a). The 
conservatism of the UHS has been addressed also by other researchers (e.g., Reiter 1990, Naeim and 
Lew 1995). 
 
To deal with this problem the conditional mean spectrum (CMS) has been recently introduced by 



Baker (Baker 2011) to be used in structural analysis instead of using UHS. The correlation of ε values 
in different periods is considered in CMS development; hence, the mentioned conservatism is 
improved. In order to explain this spectrum, consider a structural system with fundamental period, 
T*=1.0sec, located at the above mentioned site. Suppose that the level of hazard of interest is 2475 
years return period which corresponds to ε=1.88. Since the Sa value at the fundamental period of 
structure has been accepted as more common efficient intensity measures in literature (Luco and 
Bazzurro 2007, Tothong and Luco 2007), we assign the target ε value to this period e.g. ε(1.0s)=1.88. 
Considering that assignment of this ε value to other periods leads to a conservative spectrum, the 
question is then, what are the associated ε values at other periods, given that we know ε(1.0s)=1.88? 
This question can be responded by considering Figure 1. By using a large set of ground motions (as 
will be defined in Section 2.2), the correlation between ε of T=1.0s and ε of other periods has been 
revealed in Figure 1. It is obvious that the different ε values are correlated, however with different 
coefficients of correlation (ρ). In Figures 1a, 1b, 1c and 1d, ε(1.0s) is plotted against ε(0.25s), 
ε(0.50s), ε(2.0s), and ε(4.0s), respectively.     
        

 
 

Figure 1. The Scatter plot of ε values from a large set of ground motions. 
ε(1.0s) versus (a) ε(0.25s), (b) ε(0.5s), (c) ε(2.0s), and (d) ε(4.0s) 

 
By using this information, it is possible to predict the expected value of ε at different periods, given 
that we know the value of target ε at the period of interest (here, T=1.0 s). Based on probability 
calculations, Baker proposed to take the expected ε values at any other periods equal to the target ε 
multiplied by the correlation coefficient between the two ε values (Baker 2011): 
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Here, the expected ε values for periods 0.25, 0.5, 2.0, and 4.0 s are predicted 0.75, 1.35, 1.49, and 
1.13, respectively, given ε(1.0sec)=1.88. This procedure has been repeated for an entire range of 
periods and the resulted correlations are used in Equation (1.3) to find the conditional mean spectrum 
(CMS).  
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Figure 2 compares the CMS given ε(1.0sec)=1.88 in comparison with the UHS and the median 
spectrum. This Figure also includes CMS at a few other periods, having equal ε=1.88. 
 



A few closed form empirical formulas have been proposed in literature to find the correlation 
coefficient for different periods(Baker and Cornell 2006b, Baker and Jayaram 2008). Each of these 
closed form formulas in conjunction with Equation (1.2) build a complete framework to construct the 
CMS and use it instead of UHS in structural dynamic analyzes. For more details, see (Baker 2011). 
 
The main objective of this paper is to reveal an important drawback in the above mentioned procedure 
for calculation of CMS. The authors think that the developed procedure for CMS leads to an anomaly 
spectral shape that is not enough consistent with real ground motions. This guess arises from 
comparison of the CMS and median spectrum in Figure 2. The median spectrum, as shown in Figure 
2, has a peak value near the period T=0.15 sec and then this spectrum decays with a relatively rapid 
rate. However, this pattern is not observed in the shape of different CMS curves. The peak shape is 
not clear and a relatively flat region is observed near the mentioned period in all CMS curves. 
According to these observations, this hypothesis was formed that the developed CMS procedure 
suffers from a systematic bias. A conventional regression analysis has been applied in the original 
paper of CMS (Baker 2011) to measure the degree of correlation of ε values in different periods and 
the influence of outlier data has not been studied. The authors think that this overlook significantly 
affects the resulted correlation coefficients and it shall be taken into account in the CMS development 
procedure. This issue is considered in the following sections.  
 

 
 

Figure 2. Conditional Mean Spectra, conditioned on Sa values at a few periods, having equal ε=1.88. 
 
 
2. INTRODUCING A PROCEDURE TO FIND ROBUST CMS  
 
2.1. About the Robust Regression Analysis 
 
Robust regression is an important tool for analyzing data that are contaminated with outliers. Outliers 
are sample values that cause surprise in relation to the majority of the sample (Rousseeuw and Leroy 
1987). Many robust methods have been developed since 1960 to detect outliers and to provide 
resistant (stable) results in the presence of outliers (Rousseeuw and Leroy 1987). In order to achieve 
this stability, robust regression limits the influence of outliers.   
 
Robust regression analysis works by assigning a weight to each data point. Weighting is done 
automatically and iteratively using a process called iteratively reweighted least squares (Holland and 
Welsch 1977). In the first iteration, each point is assigned equal weight and model parameters are 
estimated using conventional least squares. At subsequent iterations, weights are recomputed so that 
points farther from model predictions in the previous iteration are given lower weight. The model 
parameters are then recomputed using weighted least squares. The process continues until the values 
of the estimated parameters converge within a specified tolerance. It is needed to mention that except 
the iteratively reweighted least squares process; many other techniques have been also developed for 
robust regression problems which can be found in (Rousseeuw and Leroy 1987). 
 
In the following sections, the iteratively reweighted least squares technique has been applied to find 



the robust correlation coefficient of ε values. Before that, the employed ground motion set is defined.   
 
2.2. The Ground Motion Data set the Robust Regression Analysis 
 
A strong ground motion records data set based on worldwide recordings of shallow crustal 
earthquakes is selected which was also used by Baker and Cornell to analyze the correlation of 
response spectral values (Baker and Cornell 2006b). This set includes 267 pairs of horizontal ground 
motion records with magnitudes greater than 5.5 and source-to-site distances of less than 100 km. The 
other selection criteria, as well as the detailed documentation about this set, are given in (Baker 2005). 
 
2.3. The Robust CMS 
 
Using the above mentioned data set, a conventional regression analysis has been done by Baker and 
Cornell (Baker and Cornell 2006b) to build a linear model between ε values in different periods. In 
that study, the influence of outlier ground motions was not taken into account. Here, it is supposed 
that the results obtained from that study are not sufficiently stable and application of a robust 
regression is needed to find more strength correlation coefficients. For convenience, assume that for 
the interest period T*=1.0 sec, the correlation analysis is done just for four periods: T=0.25, 0.50, 2.0, 
and 4.0 sec. On the other hand, the objective CMS is constructed just based on five period values (T*, 
and T). Figure 3 shows the scatter plot of ε(1.0sec) versus ε(0.25s), ε(0.50s), ε(2.0s), and ε(4.0s). The 
slope of solid line corresponds to the correlation of coefficient, as mentioned in section 1.  
 

 
 

Figure 3. The Scatter plot of ε values from the introduced data set, 
ε(1.0s) versus (a) ε(0.25s), (b) ε(0.5s), (c) ε(2.0s), and (d) ε(4.0s). Four random records are marked. 

 
Four random ground motions are marked in Figure 3. Since the selected records do not match exactly 
to the regression line, a residual parameter is defined for each record corresponding to the considered 
period: 
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where r(T*,Ti) symbolizes the observed residual in prediction of ε(Ti) from ε(T*). Investigation of 
residual values for these four ground motions illuminates that why it is necessary to assign different 
weight to each record and then re-calculate the correlation coefficient. 
 

- Record marked as (I), this record shows significant negative residual at periods 0.25 and 0.50 



sec, slight negative residual at T=2.0 sec, and slight positive residual at T=4.0 sec. The 
residual vector [-2.35, -1.49, -0.42, 0.37] quantifies the residuals corresponding to this record. 
The mean of residual vector is μ= -0.97 and its standard deviation is σ=1.19. Based on the 
mentioned periods, this record can be accounted as a highly outlier ground motion.  
 

- The residual vector for the record (II) is [-1.27, -0.76, -2.32, -1.92] with mean value μ=-1.57 
and σ=0.69. This record has negative residual values in all periods. Comparing with record 
(I), it has greater negative μ and it should be accounted as a more outlier data. As a direct 
result, a smaller weight shall be assigned to this record in comparison with the record (I).   
 

- The residual vector for the record (III) is [0.44, -0.29, -0.16, 0.034], value μ=-0.01 and 
σ=0.32. Comparing with two former records, this record is well-matched to the regression 
line in all periods and a higher weight should be assigned to it. 
 

- The residual vector for the record (IV) is [0.44, -0.01, 0.21, -0.12], with μ=-0.13 and σ=0.25. 
A higher weight should be assigned to this record in comparison with records (I) and (II). 
However, due to greater μ and smaller σ value, the judgment about the weight of this record is 
not straightforward in comparison with record (III).  

 
Figure 4 shows the box-plot of residual vectors for the considered ground motion records. The median 
and standard deviation of each residual vector was explained by using this Figure. A snapshot to the 
degree of outlier of each ground motion record is achievable through this Figure.  
 

 
 

Figure 4. The box-plot of residual vectors for the selected ground motion records. 
 
Rationally, the greater weight should be assigned to the ground motions with lower absolute mean and 
standard deviation. Here, a Gaussian function has been selected to meet the mentioned concern: 
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where wi is the objective weight, and μi, and σi correspond to the mean and standard deviation of the 
residual vector of the considered record. Now, the iteratively reweighted least squares procedure is 
applied to find the robust correlation coefficient values. The used algorithm can be summarized as: 
 

1- Take the initial weighting vector as unity,  
2- Calculate the ρ values for regression model.  
3- Find the residual mean vector (M) as well as the residual standard deviation vector (Σ). 
4- Determine the weighting vector based on Equation (2.2). 
5- Multiply ε values of each record by the corresponding weight value.  
6- Repeat steps 2 to 5 until the ρ values converge to a stable rate. 

 



Table 1 comprises the resulted values during the iterations. As indicated in this table, the iterative 
procedure converges to stable ρ and w values after a few iterations. 
 

Table 1. The iterative procedure to find the robust coefficient correlation. 

Iteration 
Weights (w)  ρ(T*=1s, Ti) 

Selected Records  Ti 
I II III IV  0.25s 0.50s 2.0s 4.0s 

1 1.000 1.000 1.000 1.000  0.40 0.72 0.79 0.60 
2 0.240 0.043 1.253 1.413  0.49 0.82 0.86 0.73 
3 0.33 0.026 0.158 0.176  0.54 0.83 0.89 0.80 
4 0.318 0.028 0.411 0.469  0.56 0.84 0.89 0.81 
5 0.317 0.028 0.433 0.455  0.57 0.84 0.88 0.80 
6 0.317 0.028 0.436 0.455  0.58 0.84 0.88 0.80 
7 0.317 0.028 0.436 0.454  0.59 0.84 0.88 0.79 
8 0.317 0.028 0.436 0.454  0.60 0.84 0.88 0.79 
9 0.317 0.028 0.436 0.454  0.61 0.84 0.88 0.79 

10 0.317 0.028 0.436 0.454  0.61 0.84 0.88 0.79 
 
Figure 5 compares the resulted robust regression with the conventional regression model. As it is 
obviously clear, the robust regression increases the values of correlation coefficient in all periods. 
This increase is more significant in lower period T=0.25 sec. By replacement of the robust correlation 
coefficients in Equation (1.3), the robust CMS is achievable. Figure 6 compares the resulted robust 
and the conventional CMS. Note that the CMS are formed by just five spectral acceleration values in 
five periods, here. 
 

 
 

Figure 5. The comparison of the robust regression with conventional regression model 
 
As shown in Figure 6, the shape of obtained robust CMS is significantly different with the 
conventional CMS, especially in lower periods. This issue will be more discussed in the next section, 
where the robust CMS procedure is extended for an entire range of periods.  
 



 
 

Figure 6. The comparison of the robust CMS with the conventional CMS 
 
 
3. FINAL RESULTS OF THE ROBUST CMS 
 
In the former simple example, the ground motions were weighted just for interest period T*=1.0sec. 
This weighting procedure was done based on analysis of residuals in four other periods 0.25, 0.50, 2, 
and 4 sec. Here, this procedure is extended to several interest periods and the analysis of residuals for 
each interest period is completed for an entire range of other periods. The conventional and robust 
correlation coefficients, at a variety of period pairs, are plotted in Figure 7. This Figure shows 
correlation coefficients for a selected set of periods Ti, plotted versus T* values between 0.01 and 5 
seconds. The higher value of ρ in lower periods in robust analysis is clear in this Figure, comparing to 
the conventional analysis results.  
 

 
 

Figure 7. Plot of correlation coefficients versus T*, for several Ti values; based on 
(a) Conventional analysis (b) Robust correlation analysis 

 

 
 

Figure 8. Contours of correlation coefficients versus T* and Ti; based on 
(a) Conventional analysis (b) Robust correlation analysis 



 
Figure 8 shows the same results, plotted using contours of correlation coefficients as a function of 
both Ti and T*. The numerical values from Figure 8 are provided in Table 2. This table can be used 
when correlation coefficients for a specific ground motion scenario are needed. For comparison, this 
table includes both conventional and robust analysis results.  
 

Table 2. Correlation coefficients of ε(T*) versus ε(Ti) obtained using CB08 ground motion prediction model; 
(a) Conventional analysis approach, and (b) Robust approach 

 (a) 
 

Ti 
  0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.75 1 1.5 2 2.5 3 4 5 

T* 

0.02 1.00 0.97 0.85 0.84 0.85 0.83 0.80 0.69 0.58 0.50 0.41 0.36 0.34 0.31 0.28 
0.05 0.97 1.00 0.91 0.85 0.81 0.76 0.71 0.58 0.46 0.39 0.31 0.27 0.26 0.24 0.23 
0.1 0.85 0.91 1.00 0.85 0.71 0.61 0.54 0.40 0.27 0.22 0.15 0.13 0.10 0.11 0.12 
0.2 0.84 0.85 0.85 1.00 0.78 0.67 0.59 0.45 0.31 0.25 0.15 0.11 0.08 0.08 0.08 
0.3 0.85 0.81 0.71 0.78 1.00 0.83 0.75 0.61 0.50 0.43 0.32 0.28 0.27 0.24 0.22 
0.4 0.83 0.76 0.61 0.67 0.83 1.00 0.88 0.73 0.62 0.56 0.46 0.41 0.40 0.34 0.29 
0.5 0.80 0.71 0.54 0.59 0.75 0.88 1.00 0.83 0.72 0.64 0.54 0.49 0.48 0.42 0.37 

0.75 0.69 0.58 0.40 0.45 0.61 0.73 0.83 1.00 0.87 0.76 0.67 0.62 0.59 0.53 0.46 
1 0.58 0.46 0.27 0.31 0.50 0.62 0.72 0.87 1.00 0.87 0.79 0.72 0.69 0.60 0.52 

1.5 0.50 0.39 0.22 0.25 0.43 0.56 0.64 0.76 0.87 1.00 0.89 0.81 0.76 0.68 0.61 
2 0.41 0.31 0.15 0.15 0.32 0.46 0.54 0.67 0.79 0.89 1.00 0.92 0.86 0.77 0.67 

2.5 0.36 0.27 0.13 0.11 0.28 0.41 0.49 0.62 0.72 0.81 0.92 1.00 0.94 0.82 0.72 
3 0.34 0.26 0.10 0.08 0.27 0.40 0.48 0.59 0.69 0.76 0.86 0.94 1.00 0.88 0.77 
4 0.31 0.24 0.11 0.08 0.24 0.34 0.42 0.53 0.60 0.68 0.77 0.82 0.88 1.00 0.90 
5 0.28 0.23 0.12 0.08 0.22 0.29 0.37 0.46 0.52 0.61 0.67 0.72 0.77 0.90 1.00 

 (b) Ti 
  0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.75 1 1.5 2 2.5 3 4 5 

T* 

0.02 1.00 0.97 0.88 0.88 0.82 0.78 0.79 0.74 0.63 0.59 0.53 0.45 0.42 0.25 0.27 
0.05 0.96 1.00 0.91 0.85 0.75 0.67 0.67 0.61 0.48 0.47 0.42 0.34 0.31 0.15 0.20 
0.1 0.80 0.88 1.00 0.79 0.60 0.47 0.47 0.38 0.25 0.28 0.23 0.16 0.12 0.04 0.12 
0.2 0.80 0.82 0.80 1.00 0.71 0.55 0.52 0.40 0.31 0.30 0.23 0.14 0.11 0.01 0.07 
0.3 0.81 0.78 0.73 0.81 1.00 0.78 0.75 0.65 0.57 0.53 0.44 0.36 0.32 0.18 0.20 
0.4 0.83 0.77 0.70 0.74 0.83 1.00 0.88 0.77 0.68 0.65 0.59 0.51 0.48 0.33 0.33 
0.5 0.80 0.72 0.67 0.69 0.79 0.87 1.00 0.85 0.76 0.72 0.65 0.59 0.56 0.43 0.40 

0.75 0.78 0.69 0.58 0.63 0.74 0.78 0.86 1.00 0.88 0.81 0.75 0.71 0.68 0.55 0.48 
1 0.74 0.63 0.54 0.56 0.68 0.75 0.84 0.91 1.00 0.89 0.84 0.79 0.75 0.64 0.58 

1.5 0.79 0.69 0.65 0.65 0.74 0.78 0.83 0.88 0.91 1.00 0.91 0.84 0.81 0.74 0.70 
2 0.78 0.69 0.63 0.62 0.73 0.76 0.81 0.87 0.89 0.92 1.00 0.93 0.88 0.82 0.76 

2.5 0.74 0.67 0.63 0.61 0.71 0.74 0.79 0.85 0.86 0.88 0.94 1.00 0.94 0.85 0.82 
3 0.72 0.64 0.61 0.58 0.71 0.75 0.80 0.87 0.86 0.87 0.90 0.95 1.00 0.90 0.86 
4 0.67 0.61 0.55 0.54 0.68 0.69 0.75 0.82 0.83 0.83 0.86 0.88 0.90 1.00 0.93 
5 0.54 0.48 0.40 0.40 0.57 0.53 0.66 0.73 0.74 0.75 0.76 0.78 0.81 0.89 1.00 

 
Investigation of Figure 8 shows that despite the conventional analysis, the robust analysis has been 
yielded to asymmetric ρ results, i.e. ( ) )(, 2121 TTTT =≠ ρρ . It means that the assigned weight to a 
single record is not fix and depends on the interest period (T*).  
 
The robust CMS is achievable through the robust correlation coefficients, as stated in the former 
section. Figure 9 shows the robust CMS in a few interest periods for ε=1.88.  



This Figure also comprises the conventional CMS and UHS curves.  
 

 
 

Figure 9. The robust CMS, conditioned on Sa values at the interest period. 
(a)T*=0.50 sec, (b) T*=1.0 sec, (c) T*=2.0 sec, and (d) T*=4.0 sec, having equal ε=1.88. 

  
The difference between the robust and the conventional CMS curves is significant, especially for 
higher interest periods which clarify the need to take the outliers into account.  
 
As the concluding result, the robust CMS shown in Figure 9 characterizes the rare 2500 years ground 
motions in a more reliable way comparing with the conventional CMS procedure. It worth 
emphasizing that the conventional CMS is non-conservative, specifically for the midrise structures in 
higher levels of seismic hazard.  
 
 
4. CONCLUSIONS 
 
The uniform hazard spectrum (UHS), as the more common target spectrum for structural dynamic 
analysis, does not represent a spectrum caused by a single earthquake at a given site and leads to a 
conservative spectrum in higher hazard levels. As an alternative, the conditional mean spectrum 
(CMS) has been introduced in the recent years. The CMS uses the advantages of correlation between 
spectral accelerations at different periods. This correlation is calculated based on an conventional 
regression analysis between different pairs of periods and the correlation analysis for each pair of 
periods is not influenced by result of correlation analyzes in other pairs. In this paper, it was 
demonstrated that using the mentioned conventional regression analysis may leads to a systematic 
bias in results and a robust regression analysis was proposed to calculate the robust correlation 
coefficients. In the robust CMS, the ground motion records are contributed with different weights in 
regression analysis, depending on a rational residual analysis. The final results show that the robust 
CMS significantly differs from the conventional CMS, especially for higher interest periods. As a 
final point, the shape of robust CMS represents the rare events in a more reliable manner, comparing 
with conventional CMS. 
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