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SUMMARY:

When performing safety studies, the seismic vulniéita of industrial plants is often characterizleyd afragility
curve Such a curve expresses the failure probabilitya cftructure as a function of seismic intensitye Th
fragility curve is often supposed to follow a logmal distribution. Furthermore, the models useddscribe the
ground motion do not properly reproduce the natuaaiability, and a scaling method is often usedd¢oount
for different seismic levels. In this study, we pose to avoid these simplifications and to stuayrttmpact on
the fragility curves. In particular, we use a newd®l for seismic ground motion based on a Karhurme
expansion that is easily adjustable to real datenTa Karhunen-Loéve expansion is used in orderdoce the
number of mechanical analysis for determining figgcurves.
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1. INTRODUCTION

When performing safety studies, the seismic vubsiéta of industrial plants is often characterizied
afragility curve Such a curve expresses the failure probability sfructure as a function of seismic
intensity.

The numerical construction of a fragility curve aiwes a large number of mechanical analyses,
performed for different seismic intensities. Howewhe number of recorded accelerograms available
in databases is generally not sufficient to conduch studies and we have to simulate artificiason

In this article, a new method recently proposedbwgtner and Poirion (Zentnet al.,2012) is used

for generating artificial non stationary ground rmanttime histories. This method is based on the
Karhunen-Loéve expansion and produces artificieérograms whose statistical properties are close
to the real ones.

The aim of our work is to develop numerically effict methods for evaluating fragility curves
without having to scale the accelerograms or tosicten lognormal fragility curves, assumption
classically used in parametric studies.

The scaling method supposes that the frequencyerbiof the excitation does not depend on its
intensity. It consists in multiplying the referermecelerograms by a coefficient to evaluate tHeri
probabilities corresponding to tkealed intensities

The Karhunen-Loéeve expansion allows to simulatepdesnof accelerograms for a given site specific
scenario. These artificial accelerograms are pargt in classes of growing intensity and the failu
probability is evaluated for each class. In orderreduce the number of mechanical analysis, we



propose to use the Karhunen-Loeve (KL) expansien &r the structural responses. Thus, for each
class, a non stationary and non Gaussian procdaderifified from a “small” number of structural
responses. Then a sample of structural responssamisated using the KL expansion. This allows
estimating failure probabilities and constructingagility curves without scaling or lognormal
hypothesis.

2. MODELISATION OF THE SEISMIC EXCITATION

The ground acceleration resulting from an eartkgua modelled as a R-valued second-order zero-
mean stochastic proce:fs:{r(t)}m[o’ﬂ based on a probability space, £ ,P) and indexed on the

interval [O,T], T>0, where T is the duration of the earthquake. Furthermores fmocess is
assumed to be mean-square continuous, with contintrajectories (Soize, 1993). A seismic event
(i.e. a ground acceleration recor{d}(t)}m[oﬂ can then be considered as a particular realizafichis

process. In practice, such event can be charaeteby several indicators:
» the PGA (Peak Ground Acceleration), definedR$A = ré%a?]{y(t)‘ ;
to,

- the PSA (Pseudo Spectral Acceleration), givenR&A(f,,x,) = (21t , ) ma>]4y(t;fo,xo)|,

too,T
where {y(t;fo,)(o)}m[m] is the response of a single-degree-of-freeijom SDlinear
oscillator, with natural frequency, and damping ratioX,, submitted to the external
excitation {V(t)}m[o,r]- This indicator integrates the effect of the sie and verifies:
lim PSA(f,,x,)=PGA, also called ZPA (Zero Period Acceleration);

f0a+m

« the RS (Response Spectrum) at fixed damping ratip, defined as the function
RS:f, - RYf,)=PSAf,.X,)-

Numerous seismic models can be found in the lileeafsee, for example, Kanai, 1957, Tajimi, 1960,
Cloughet al, 1975, Rezaiaet al., 2010). In this work, we use the probabilistic mogi®posed by
Zentner and Poirion (Zentnext al., 2012). Based on a Karhunen-Loéve expansion ofséiemic
excitation, this non Gaussian and non stationardehs easily identifiable from real data and can
easily be simulated.

In what follows,H denotes the Hilbert spade; ([O T] ,dt) of the (classes of) mappings frdm T]
into R, square integrable with respect to the Lebesgussuredt, this space being endowed with

the usual inner produdf |g),, = Ef (t)o(t)dt.

Karhunen-Loeve expansion
Let X :{X(t)}m[o,r] be a R-valued second-order zero-mean stochasitegs based oA ,P),

indexed on [O, T], mean-square  continuous, with continuous trajextpr and let
Ry :[O,T]2 SRi(6t) o R ()= E[X(t)X(t')] and Q, :H - H:f - Q,f be respectively
its continuous autocorrelation function and itsoaotrelation kernel such thaﬂ(f,t)DHx[O,T],

(Q,f)t)= LT R, (t,t)f (t)dt'. in the above expressioE[[]] designs the mathematical expectation.

The autocorrelation kerndd, is a Hilbert-Schmidt positive self-adjoint contous linear operator.
As a result, according to the Mercer theorem (Mert@09):



1. the spectrum of its eigenvalu(a’s(x )mis countable and form a positive monotonic decrggsi
sequence converging to 0;

2. the associated eigenfunctio{(ﬁa} such that[t [] [O, T]:

(Que. 1) = [ Ry (t.t)e, (D)=, 0, (1) 21)

are continuous 0{0, T] and form a Hermitian basis ¢ (i.e. they are orthonormal for the inner

product<.|.>H and the vector space spanned by these functiatenee inH );

3. R, has the following representation:

R (tt)= 3.0 (0. (t)  22)

a=1
where the convergence in Eq.(2.2) is absolute arfdrmn.

From this result and the Karhunen-Loéve theorenth{fi@en, 1947, Loéve, 1978), there exists then a
countable family{Ea}q21 of uncorrelated R-valued second-order random blsabased orA(F ,P),

with zero mean and unit variance, given by:

= le), ==X @

such that the sequenc&i?ﬂﬁ{a% (t))M21 converges in mean-square ldt) uniformly in t.

As a result, the procesX has the following representation, referred to lees Karhunen-Loéve
expansion:

X([0)=328.0.0 @9

Based on this result, a similar representation been chosen for the seismic excitation process
r :{r(t)}tD[O,T]’ but with only a finite number M of terms in thepresentation (2.4) (corresponding

to the M first eigenvalues and eigenfuncti({mx ,(pa) of the autocorrelation functioRR- of

I<asM

[') and assuming that the random variadléo'ﬁ)]susM are mutually independent. In other words, we

have chosen for this process the following model:

r)=3hgel) @9

where (Ea)EasM is a M-family of mutually independent R-valuecceed-order random variables
based onA,F,P), with zero mean and unit variance, given by:

£, =ﬁﬂ r(the, (t)t  (2.6)



and ()\G ,(pa) <acw 1S the family of the M first solutions (ranked bgcreasing values of) of the
spectral problem: flnc()\,q:) DR, xH such that[t [J [O, T],

[ Re(ttholt)dt=2elt) (27)

This model was identified from the available seissignals using the following procedure.
Let {y"", 1<I<L}, L=1, be the L-family of these signals, in which eackement

y&h —{y(')( )}tD[OT] is regarded as a trajectory Bf. In practice, each signal” is given in the form

of a finite family of real number{y(')( )} corresponding to the recorded valuesydf at points

1<j<N
{tj}]_J<N of a regular partitiorO=1t, <t, <...<t, =T of [O, T]. By assimilating these L sampled

(|)

experimental S|gnal£{y to L numerical realizations of and using an appropriate

}]_J<N )]_|<L

statistical estimator it is then possible to obtamestimate of the autocorrelation functiBy . Let
{ﬁr(ti'tj)} be this estimate, such thl( ) {L N}

“Isyoene)  es

1=1

A
\—/
I_|H

Substituting it in EQ.(2.7) and solving this eqoatby a Galerkin method gives the M sought solgtion
()\a ,{(pa (t J)} N )L " Inserting these solutions and the successiveriexpetal trajectories of
= <a<

into Eq.(2.6) leads td. xM integrals whose numerical calculation using thetifian of [O,T]
considered above gives:

£ = Ot ot )at, 1 1< Lisasm  (29)

Tt

where At is the time step. We obtain in this way, for eaahdom variable,, a L-sample of

approximated realizatio{gm(')}]SISL , from which it is then possible to statisticallgtinate the
cumulative distribution function (CDF) or the pradiildy density function (PDF) of,, . At this stage,
each random variablg, is therefore specified by an estimate of its distion (CDF or PDF). From

these estimated distributions we can simulate dmelom variable{{a)]sasM , then, using Eq.(2.5),

the procesd itself. It should be noticed that the proposed ehd@.5) is non Gaussian and non
stationary. Furthermore, it is easy to simulatadilg identifiable from seismic records and can be
continuously enriched.

3. CONSTRUCTION OF THE FRAGILITY CURVES

The probability of failure of a structure subject & seismic excitation” ={F(t)}tD[O’T] can be



expressed as the probability of threshold crossing level b, by one of the response parameters of
the structure, denoted by :{Y(t)}m[o:]- In seismic engineering, the scaling method isroftsed

for evaluating the fragility curves. This methodoives three steps:

* normalise the signals b}ﬁ—z:\iPGAi (respectiverNiz:\flPSA ) and then multiply

them by the scaling coefficient;

e« compute the conditional probability of failurePZPA(trg[l(?TﬁY(tX>b) (respectively

PPSA(ma>]1Y(t)| > b)).

too,T

As already mentioned, this method supposes thafrégpiency content of the excitation does not
depend on its intensity. In this work, we want woid this assumption and assess its influence en th
fragility curve. For the model proposed in sectiynt is necessary to gather the signals in classes
what can be done according to different methods ¢setion 4). For each class, the curve represents

the conditional probabilityPPGA(trDr[lch)]{Y(t] > b) (respectiverPPSA(tré?(?TﬁY(t)| > b)) as a function

of the mean PGA (respectively PSA) of the class Tragility curves determined in the following
section, using the KL expansion, will be approxietafin the least-squares sense) by lognormal
curves in order to evaluate the relevance of tbhimraon assumption. Moreover, aiming at industrial
applications, it is necessary to reduce the nunabemechanical analysis. But, if this nhumber is
decreased, the size of each class is also reducktha proposed method loses accuracy. For classes
where only a few structural responses are avail&bell be necessary to enrich them by applyihg t

KL expansion to the initial population in order iticrease the sample size and to evaluate failure
probabilities.

4. APPLICATIONS

Reference signals and clustering

The database of real accelerograms used to gerzetifitéal time histories is a subset of 97 signat

the European Strong-Motion Database (ESD, 2000 3hbset is chosen according to magnitudes
5.5 < M < 6.5 and distances in the range 0 < D «®0 Using the KL method, 30000 new signals

have been simulated and clustered by PGA and byfBSA) = 8Hz and X, = 5%. The clustering

was done using the k-means method (Jain, 1999)thHie obtained 30 classes, each containing a
minimum of one hundred signals. Figure 1 showsetrwution of the mean RS (response spectrum)

with respect tdf, for each class of PGA and PSA.
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Figure 1. Evolution of the mean RS according gddr each class of PGA and PSA signals simulate@®@o
classes of PGA, and 30 classes of PSA for 8 HA&6d

The frequency contents differ between the PGA @A)classes. This result shows the simplification
introduced by the scaling method, which supposesstime frequency contents for each of the
excitation levels.

Mechanical models

For the numerical applications two simple mechdnicadels are chosen: a SDOF linear oscillator
and a SDOF nonlinear oscillator. These models sepiteglobal behaviours of simple structures whose
responses are mainly on the first eigenmode. Irh lxases, we choose a natural frequency

f, = w, /2= 8Hz and a damping ratjp, = 5%.

The dynamics of the linear and nonlinear oscillstioe respectively governed by the following
equations:

§(t)+ 2x0p¥(t) + 0 ’y(t) = —y(t) @)
y(t)+ 2x00oy(t) + Fly(t) A) = —y(t)  4.2)

where{y(t)}mloﬂ is the acceleration and), =v'k/m, with m = 1kg. The non linearityF(y(t),\)
is defined on Figure 2. It describes a kinematicleaing phenomenon.
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Figure 2. Rheological model of the oscillator with kinemat@rdening.



For the calculations, we have chosen the followialyie for the slope ratiod = 0.2. The nonlinear
oscillator is designed for having a linear behawiounti the 18 class (in which

RSf,) = 239m/s’), when the signals are clustered by PGA. Its ielagimit is

Yo = 2.39/(2T[f0)2 = 956x10™ m. For a PSA clustering, this corresponds to the dass. The
failure thresholdb is chosen such that the displacement ductilityateu = b/y,, equals 2. Thus,

the thresholdo equals1.9x10° m. We have arbitrarily decided to keep the samestiold for the
linear oscillator. Besides, for both models, th&ahdisplacement and velocity are zero.

Results obtained
The Figures 3 and 4 represent the fragility curaesording to the classes of PGA and PSA for

f, =8Hz and x, =5%. On these figures the results obtained with theppsed method are
compared to the ones derived from the lognormalragiymation and the scaling method. 95%

. N
confidence intervals are also shown. When the fhitiyaof failure p is estimated byp = —2"

where N is the sample size arld ,; the number of failures, then the 95% confidenteril for this
estimate can be evaluated as (Saporta, 2006):

[@ ~ 196, p(-p) p+196 /p—(l_p)}
N N

In order to account for uncertainty on the mechameodel, the natural frequency, the damping ratio
and the slope ratio have been modelled as unifemmdam variable)(0.9¢,1.1c), where c is the
reference value. For the scaling method, the 168t of the 10 class for the PGA curve, and the
1586 signals of the fclass for the PSA curve have been multiplied bpmothetic factor.
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Figure 3. Fragility curves for linear and nonlinear oscibkes, with 30 PGA classes. Thick points: proposed
(Monte-Carlo) method with 95% confidence internadtfed line); solid line: lognormal approximatiatgshes:
scaling method.
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Figure 4. Fragility curves for linear and nonlinear oscilias, with 30 PSA classes. Thick points: proposed
(Monte-Carlo) method with 95% confidence interna@dtfed line); solid line: lognormal approximatiatgshes:
scaling method.

We can observe that the scaling method and theofamal approximation lead to fragility curves
which differ from those provided by the proposedhnd.

Karhunen-Loéve expansion of the structural response

We now want to construct the fragility curves byplgng the proposed method to the structural
responses (i.e. by applying the KL expansion nt tmthe excitation but also to the seismic reggon

of the structure). Currently, this work is in pregs. We present here some preliminary results of a
study dealing with the nonlinear oscillator consadkabove. It consists mstimating the PDF of the
absolute value of the extreme structural respofbis. estimate was first performed using the 2051
experimental signals of th& ®GA classThen, it was obtained from 1000 simulated signatsiped

by the KL expansiomy taking, as basic signals for this method, fr&0 and then 100 signals of the



6™ PGA class (randomly chosen in this class). In ezde, the PDF was estimated using Gaussian
kernel smoothing. The two estimates are presemtdegure 5.
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Figure 5. PDF of the absolute value of the extreme respohgemonlinear oscillator. Solid line: estimate
obtained from the 2051 experimental signals ofdh&®GA class; dotted and dashed lines: estimateinebita
from 1000 simulated signals derived from the preplosiodel identified first from 50 experimental sitg)
(dots), then from 100 experimental signals (dashes)

We can see that the KL expansion based on 10Calinitkperimental signals gives a better
approximation of the PDF than the same method base®O0 initial experimental signals. The
precision of the estimate of the autocorrelationcfion of the response process, and of the random

variables¢, , increases with the number of signals. The highisrnumber, the more the KL model

will be representative of the 2051 initial signafshe 8" PGA class. The quality of the approximation
obtained encourages continuing in this directiaamely applying the KL expansion to the structural
responses, in order to reduce the number of mecilaamalysis.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, we have proposed a methodology dositucting fragility curves where the seismic
excitation is modelled by a non Gaussian and natiosiary stochastic process. The model of such
process is constructed by means of a ground maieabase and using the Karhunen-Loéve
expansion. This methodology allows the determimatibfragility curves without scaling and without
assuming am priori lognormal fragility curve. In order, to reduce thember of mechanical analysis,
it has been proposed to use the Karhunen-Loévensigrafor the structural responses. Currently, this
work is in progress nevertheless, the first resalitsined encourage continuing in this direction.
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