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SUMMARY: 
When performing safety studies, the seismic vulnerability of industrial plants is often characterized by a fragility 
curve. Such a curve expresses the failure probability of a structure as a function of seismic intensity. The 
fragility curve is often supposed to follow a lognormal distribution. Furthermore, the models used to describe the 
ground motion do not properly reproduce the natural variability, and a scaling method is often used to account 
for different seismic levels. In this study, we propose to avoid these simplifications and to study their impact on 
the fragility curves. In particular, we use a new model for seismic ground motion based on a Karhunen-Loève 
expansion that is easily adjustable to real data. Then, a Karhunen-Loève expansion is used in order to reduce the 
number of mechanical analysis for determining fragility curves. 
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1. INTRODUCTION 

 
When performing safety studies, the seismic vulnerability of industrial plants is often characterized by 
a fragility curve. Such a curve expresses the failure probability of a structure as a function of seismic 
intensity. 
 
The numerical construction of a fragility curve involves a large number of mechanical analyses, 
performed for different seismic intensities. However, the number of recorded accelerograms available 
in databases is generally not sufficient to conduct such studies and we have to simulate artificial ones. 
 
In this article, a new method recently proposed by Zentner and Poirion (Zentner et al., 2012) is used 
for generating artificial non stationary ground motion time histories. This method is based on the 
Karhunen-Loève expansion and produces artificial accelerograms whose statistical properties are close 
to the real ones. 
 
The aim of our work is to develop numerically efficient methods for evaluating fragility curves 
without having to scale the accelerograms or to consider lognormal fragility curves, assumption 
classically used in parametric studies. 
 
The scaling method supposes that the frequency content of the excitation does not depend on its 
intensity. It consists in multiplying the reference accelerograms by a coefficient to evaluate the failure 
probabilities corresponding to the scaled intensities. 
 
The Karhunen-Loève expansion allows to simulate samples of accelerograms for a given site specific 
scenario. These artificial accelerograms are partitioned in classes of growing intensity and the failure 
probability is evaluated for each class. In order, to reduce the number of mechanical analysis, we 



propose to use the Karhunen-Loève (KL) expansion also for the structural responses. Thus, for each 
class, a non stationary and non Gaussian process is identified from a “small” number of structural 
responses. Then a sample of structural responses is simulated using the KL expansion. This allows 
estimating failure probabilities and constructing fragility curves without scaling or lognormal 
hypothesis. 
 
 
2. MODELISATION OF THE SEISMIC EXCITATION 
 
The ground acceleration  resulting from an earthquake is modelled as a R-valued second-order zero- 
mean stochastic process ( ){ } [ ]T,0tt ∈Γ=Γ  based on a probability space (A,F ,P) and indexed on the 

interval [ ]T,0 , 0T > , where T  is the duration of the earthquake. Furthermore, this process is 
assumed to be mean-square continuous, with continuous trajectories (Soize, 1993). A seismic event 
(i.e. a ground acceleration record) ( ){ } [ ]T,0tt ∈γ  can then be considered as a particular realization of this 

process. In practice, such event can be characterized by several indicators: 

• the PGA (Peak Ground Acceleration), defined by 
[ ]

( )tmaxPGA
T,0t

γ=
∈

; 

• the PSA (Pseudo Spectral Acceleration), given by ( ) ( )
[ ]

( )00
T,0t

2
000 ,f;tymaxf2,fPSA χπ=χ

∈
, 

where ( ){ } [ ]T,0t00 ,f;ty ∈χ  is the response of a single-degree-of-freedom (SDOF) linear 

oscillator, with natural frequency 0f  and damping ratio 0χ , submitted to the external 

excitation ( ){ } [ ]T,0tt ∈γ . This indicator integrates the effect of the structure and verifies: 

( ) PGA,fPSAlim 00
f0

=χ
+∞→

, also called ZPA (Zero Period Acceleration); 

 
• the RS (Response Spectrum) at fixed damping ratio 0χ , defined as the function 

( ) ( )0000 ,fPSAfRSf:RS χ=→ . 

 
Numerous seismic models can be found in the literature (see, for example, Kanai, 1957, Tajimi, 1960, 
Clough et al., 1975, Rezaian et al., 2010). In this work, we use the probabilistic model proposed by 
Zentner and Poirion (Zentner et al., 2012). Based on a Karhunen-Loève expansion of the seismic 
excitation, this non Gaussian and non stationary model is easily identifiable from real data and can 
easily be simulated. 
 

In what follows, H  denotes the Hilbert space [ ]( )dt,T,0L2
R  of the (classes of) mappings from [ ]T,0  

into R , square integrable with respect to the Lebesgue measure dt , this space being endowed with 

the usual inner product ( ) ( )∫=
T

0H
dttgtfgf . 

 
Karhunen-Loève expansion 
Let ( ){ } [ ]T,0ttXX ∈=  be a R-valued second-order zero-mean stochastic process based on (A,F ,P), 

indexed on [ ]T,0 , mean-square continuous, with continuous trajectories, and let 

[ ] ( ) ( ) ( ) ( )[ ]'tXtXE't,tR't,t:RT,0:R X
2

X =→→  and fQf:HH:Q XX →→  be respectively 

its continuous autocorrelation function and its autocorrelation kernel such that, ( ) [ ]T,0Ht,f ×∈∀ , 

( )( ) ( ) ( )∫=
T

0 XX 'dt'tf't,tRtfQ . In the above expression, [ ]⋅E  designs the mathematical expectation. 

The autocorrelation kernel XQ  is a Hilbert-Schmidt positive self-adjoint continuous linear operator. 
As a result, according to the Mercer theorem (Mercer, 1909): 



1. the spectrum of its eigenvalues ( ) 1≥ααλ is countable and form a positive monotonic decreasing 

sequence converging to 0; 
2. the associated eigenfunctions { } 1≥ααφ , such that, [ ]T,0t ∈∀ : 

             ( )( ) ( ) ( ) ( )∫ αααα φλ=φ=φ
T

0 XX t'dt't't,tRtQ       (2.1) 

are continuous on [ ]T,0  and form a Hermitian basis of H  (i.e. they are orthonormal for the inner 

product 
H

..  and the vector space spanned by these functions is dense in H ); 

3. XR has the following representation: 

( ) ( ) ( )∑
+∞

=α
ααα φφλ=

1
X 'tt't,tR      (2.2) 

where the convergence in Eq.(2.2) is absolute and uniform. 

From this result and the Karhunen-Loève theorem (Karhunen, 1947, Loève, 1978), there exists then a 
countable family { } 1≥ααξ  of uncorrelated R-valued second-order random variables based on (A,F ,P), 

with zero mean and unit variance, given by: 
 

( ) ( )∫ α
α

α
α

α φ
λ

=φ
λ

=ξ
T

0H
dtttX

1
X

1
     (2.3) 

such that the sequence ( )( )
1M

M

1
t

≥=α ααα∑ φξλ  converges in mean-square to ( )tX , uniformly in t . 

As a result, the process X  has the following representation, referred to as the Karhunen-Loève 
expansion: 
 

 ( ) ( )ttX
1
∑
+∞

=α
ααα φξλ=      (2.4) 

 

Based on this result, a similar representation has been chosen for the seismic excitation process 
( ){ } [ ]T,0tt ∈Γ=Γ , but with only a finite number M of terms in the representation (2.4) (corresponding 

to the M first eigenvalues and eigenfunctions ( ) M1, ≤α≤αα φλ  of the autocorrelation function ΓR  of 

Γ ) and assuming that the random variables ( ) M1 ≤α≤αξ  are mutually independent. In other words, we 

have chosen for this process the following model: 
 

            ( ) ( )tt
M

1
∑

=α
ααα φξλ=Γ        (2.5) 

where ( ) M1 ≤α≤αξ  is a M-family of  mutually independent R-valued second-order random variables 

based on (A,F ,P), with zero mean and unit variance, given by: 
 

 ( ) ( )∫ α
α

α φΓ
λ

=ξ
T

0
dttt

1
     (2.6) 



and ( ) M1, ≤α≤αα φλ  is the family of the M first solutions (ranked by decreasing values of λ ) of the 

spectral problem: find ( ) HR, ×∈φλ +  such that, [ ]T,0t ∈∀ , 

 

 ( ) ( ) ( )∫ λφ=φΓ

T

0
t'dt't't,tR      (2.7) 

 
This model was identified from the available seismic signals using the following procedure. 

Let { )l(γ , Ll1 ≤≤ }, 1L ≥ , be the L-family of these signals, in which each element 

( ){ } [ ]T,0t
)l()l( t ∈γ=γ  is regarded as a trajectory of Γ . In practice, each signal )l(γ  is given in the form 

of a finite family of real numbers ( ){ }
Nj1j

)l( t
≤≤

γ  corresponding to the recorded values of )l(γ  at points 

{ }
Nj1jt

≤≤
 of a regular partition Tt...tt0 N21 =<<<=  of [ ]T,0 . By assimilating these L sampled 

experimental signals ( ){ }( )
Ll1Nj1j
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≤≤≤≤

γ  to L numerical realizations of Γ  and using an appropriate 

statistical estimator it is then possible to obtain an estimate of the autocorrelation function ΓR . Let 

( ){ }
Nj,i1j,i ttR

~
≤≤Γ  be this estimate, such that, ( ) { }2N,...,1j,i ∈∀ : 
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Substituting it in Eq.(2.7) and solving this equation by a Galerkin method gives the M sought solutions 

( ){ }( )
M1Nj1jt

~
,

~
≤α≤≤≤αα φλ . Inserting these solutions and the successive experimental trajectories of Γ  

into Eq.(2.6) leads to ML ×  integrals whose numerical calculation using the partition of [ ]T,0  
considered above gives: 
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where t∆  is the time step. We obtain in this way, for each random variable αξ , a L-sample of 

approximated realizations{ } Ll1

)l(~
≤≤αξ , from which it is then possible to statistically estimate the 

cumulative distribution function (CDF) or the probability density function (PDF) of αξ . At this stage, 

each random variable αξ  is therefore specified by an estimate of its distribution (CDF or PDF).  From 

these estimated distributions we can simulate the random variables ( ) M1 ≤α≤αξ , then, using Eq.(2.5), 

the process Γ  itself. It should be noticed that the proposed model (2.5) is non Gaussian and non 
stationary. Furthermore, it is easy to simulate, readily identifiable from seismic records and can be 
continuously enriched. 
 
 
3. CONSTRUCTION OF THE FRAGILITY CURVES 
 
The probability of failure of a structure subject to a seismic excitation ( ){ } [ ]T,0tt ∈Γ=Γ  can be 



expressed as the probability of threshold crossing of a level b , by one of the response parameters of 
the structure, denoted by ( ){ } [ ]T,0ttYY ∈= . In seismic engineering, the scaling method is often used 

for evaluating the fragility curves. This method involves three steps: 
 

• simulate sN  signals with PGA (respectively PSA) denoted ( ) { }sN,...,1iiPGA ∈  (respectively 

( ) { }sN,...,1iiPSA ∈ ) from the same model; 

• normalise the signals by ∑ =
sN

1i i
s

PGA
N

1
 (respectively ∑ =

sN

1i i
s

PSA
N

1
) and then multiply 

them by the scaling coefficient; 

• compute the conditional probability of failure 
[ ]
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
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 >
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[ ]
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As already mentioned, this method supposes that the frequency content of the excitation does not 
depend on its intensity. In this work, we want to avoid this assumption and assess its influence on the 
fragility curve. For the model proposed in section 2, it is necessary to gather the signals in classes, 
what can be done according to different methods (see section 4). For each class, the curve represents 

the conditional probability 
[ ]
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PGA  (respectively 

[ ]
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of the mean PGA (respectively PSA) of the class. The fragility curves determined in the following 
section, using the KL expansion, will be approximated (in the least-squares sense) by lognormal 
curves in order to evaluate the relevance of this common assumption. Moreover, aiming at industrial 
applications, it is necessary to reduce the number of mechanical analysis. But, if this number is 
decreased, the size of each class is also reduced and the proposed method loses accuracy. For classes 
where only a few structural responses are available, it will be necessary to enrich them by applying the 
KL expansion to the initial population in order to increase the sample size and to evaluate failure 
probabilities. 
 
 
4. APPLICATIONS 
 
Reference signals and clustering 
The database of real accelerograms used to generate artificial time histories is a subset of 97 signals of 
the European Strong-Motion Database (ESD, 2000). This subset is chosen according to magnitudes 
5.5 < M < 6.5 and distances in the range 0 < D < 20 km. Using the KL method, 30000 new signals 
have been simulated and clustered by PGA and by PSA for Hz 8f 0 =  and %50 =χ . The clustering 

was done using the k-means method (Jain, 1999). We thus obtained 30 classes, each containing a 
minimum of one hundred signals. Figure 1 shows the evolution of the mean RS (response spectrum) 
with respect to 0f  for each class of PGA and PSA. 

 
 



 
Figure 1. Evolution of the mean RS according to f0 for each class of PGA and PSA signals simulated for 30 

classes of PGA, and 30 classes of PSA for 8 Hz and 5%. 
 
The frequency contents differ between the PGA (or PSA) classes. This result shows the simplification 
introduced by the scaling method, which supposes the same frequency contents for each of the 
excitation levels. 
 
 
Mechanical models 
For the numerical applications two simple mechanical models are chosen: a SDOF linear oscillator 
and a SDOF nonlinear oscillator. These models represent global behaviours of simple structures whose 
responses are mainly on the first eigenmode. In both cases, we choose a natural frequency 

Hz82/f 00 =πω=  and a damping ratio %50 =χ . 

 
The dynamics of the linear and nonlinear oscillator are respectively governed by the following 
equations: 
 

               ( ) ( ) ( ) ( )ttyty2ty 2
000 γ−=ω+ωχ+ ɺɺɺ          (4.1) 

       
               ( ) ( ) ( )( ) ( )t,tyFty2ty 00 γ−=λ+ωχ+ ɺɺɺ       (4.2) 

 

where ( ){ } [ ]T,0tt ∈γ  is the acceleration and mk /0 =ω , with kg 1m = . The non linearity ( )( )λ,tyF  

is defined on Figure 2. It describes a kinematic hardening phenomenon. 
 

 
 

Figure 2. Rheological model of the oscillator with kinematic hardening. 



 
For the calculations, we have chosen the following value for the slope ratio: 2.0=λ . The nonlinear 
oscillator is designed for having a linear behaviour until the 10th class (in which 

2
0 m/s 39.2)f(RS = ), when the signals are clustered by PGA. Its elastic limit is 

( ) 42
0nl 1056.9f239.2y −×=π=  m. For a PSA clustering, this corresponds to the 11th class. The 

failure threshold b  is chosen such that the displacement ductility demand nlyb=µ  equals 2. Thus, 

the threshold b  equals 3109.1 −×  m. We have arbitrarily decided to keep the same threshold for the 
linear oscillator. Besides, for both models, the initial displacement and velocity are zero. 
 
 
Results obtained 
The Figures 3 and 4 represent the fragility curves according to the classes of PGA and PSA for 

Hz 8f 0 =  and %50 =χ . On these figures the results obtained with the proposed method are 

compared to the ones derived from the lognormal approximation and the scaling method. 95% 

confidence intervals are also shown. When the probability of failure p  is estimated by 
N

N
p̂ def=  

where N  is the sample size and defN  the number of failures, then the 95% confidence interval for this 

estimate can be evaluated as (Saporta, 2006): 
 

( ) ( )
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


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p̂1p̂
96.1p̂,

N

p̂1p̂
96.1p̂  

 
In order to account for uncertainty on the mechanical model, the natural frequency, the damping ratio 
and the slope ratio have been modelled as uniform random variables U(0.9c,1.1c), where c is the 
reference value. For the scaling method, the 1695 signals of the 10th class for the PGA curve, and the 
1586 signals of the 11th class for the PSA curve have been multiplied by a homothetic factor. 
 



 

Figure 3. Fragility curves for linear and nonlinear oscillators, with 30 PGA classes. Thick points: proposed 
(Monte-Carlo) method with 95% confidence interval (dotted line); solid line: lognormal approximation; dashes: 

scaling method. 

 

 

Figure 4. Fragility curves for linear and nonlinear oscillators, with 30 PSA classes. Thick points: proposed 
(Monte-Carlo) method with 95% confidence interval (dotted line); solid line: lognormal approximation; dashes: 

scaling method. 

 
We can observe that the scaling method and the lognormal approximation lead to fragility curves 
which differ from those provided by the proposed method. 
 
 
Karhunen-Loève expansion of the structural response 
We now want to construct the fragility curves by applying the proposed method to the structural 
responses (i.e. by applying the KL expansion not only to the excitation but also to the seismic response 
of the structure). Currently, this work is in progress. We present here some preliminary results of a 
study dealing with the nonlinear oscillator considered above. It consists in estimating the PDF of the 
absolute value of the extreme structural response. This estimate was first performed using the 2051 
experimental signals of the 6th PGA class. Then, it was obtained from 1000 simulated signals provided 
by the KL expansion by taking, as basic signals for this method, firstly 50 and then 100 signals of the 



6th PGA class (randomly chosen in this class). In each case, the PDF was estimated using Gaussian 
kernel smoothing. The two estimates are presented on Figure 5. 
 

 

Figure 5. PDF of the absolute value of the extreme response of the nonlinear oscillator. Solid line: estimate 
obtained from the 2051 experimental signals of the 6th PGA class; dotted and dashed lines: estimates obtained 
from 1000 simulated signals derived from the proposed model identified first from 50 experimental signals, 

(dots), then from 100 experimental signals (dashes). 

 
We can see that the KL expansion based on 100 initial experimental signals gives a better 
approximation of the PDF than the same method based on 50 initial experimental signals. The 
precision of the estimate of the autocorrelation function of the response process, and of the random 
variables αξ , increases with the number of signals. The higher this number, the more the KL model 

will be representative of the 2051 initial signals of the 6th PGA class. The quality of the approximation 
obtained encourages continuing in this direction, namely applying the KL expansion to the structural 
responses, in order to reduce the number of mechanical analysis. 
 
 
5. CONCLUSIONS AND PERSPECTIVES 
 
In this paper, we have proposed a methodology for constructing fragility curves where the seismic 
excitation is modelled by a non Gaussian and non stationary stochastic process. The model of such 
process is constructed by means of a ground motion database and using the Karhunen-Loève 
expansion. This methodology allows the determination of fragility curves without scaling and without 
assuming an a priori lognormal fragility curve. In order, to reduce the number of mechanical analysis, 
it has been proposed to use the Karhunen-Loève expansion for the structural responses. Currently, this 
work is in progress nevertheless, the first results obtained encourage continuing in this direction. 
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