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SUMMARY: 

The covariance-driven stochastic subspace identification method is a practical way for modal parameters 

identification under ambient excitation. It was demonstrated in a systematic way that modal parameters were 

gotten from the matrices obtained from the singular value decomposition, and this process hasn't been explicitly 

deduced so far. This deduction could do benefits to understanding, application and improvement of the 

identification method. Numerical results showed that the precision of modal parameters could be improved 

strikingly by extending matrices, and the frequency of excitation also could be identified when it was a sine or 

cosine function. This method could be helpful to the identification of excitation source in earthquake 

engineering. 
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1. INTRODUCTION 
 
Modal parameters identification is an active research direction 

[1]
. Among the identification methods, 

covariance-driven stochastic subspace is an effective way. It supposed that environmental excitation 
was white noise. It also supposed that the responses were ergodic and its average value was zero. The 
principle of covariance-driven stochastic subspace was not demonstrated detailedly. How to get the 
modal parameters from the matrices obtained from the singular value decomposition is a key problem, 
which hasn’t been proved strictly by now. Some paper even had wrong understanding. This thesis 
gives the process in a systematic way which was helpful for researcher. 
 

 
2. MODEL OF COVARIANCE-DRIVEN STOCHASTIC SUBSPACE METHOD 

 

The basic model 
[2]

 was introduced 
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In fact, the characters of k , k were not easy to determine. In order to simplify the problem, it 

supposed that. k , k were white noises which mean value was zero. The character was written as 
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where 
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Supposed that the initial state 0x  was irrelevant with k and k , then 



 

0 0T

kE w x    ， 0,1,2,3k              （2.4） 

0 0T

kE v x    ， 0,1,2,3k              （2.5） 

Through Eq.（2.1）,（2.4）and（2.5）such conclusion could be obtained. 

0T

k i kE w y
    ， 0T

k i kE v y
    ， 1,2,3 i            （2.6） 

Eq.（6）showed that k iw   was irrelevant with ky .Furthermore, it supposed that ky was ergodic and its 

expected value was zero
[3]

. 

Covariance matrix was written as 

T

i k i kR E y y
                      （2.7） 

The next state of output covariance matrix was written as 

1
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k kG E x y
                       （2.8） 

With Eq.（1）and（7） 
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This conclusion described the relationship between iR  and system matrix dA .In the following section, 

iR  was made by observation data, and from which the modal parameters could be obtained. 

The hankel matrix pY  was made by responses that could be displacement，velocity and acceleration. 
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where 2i n ，and n was the number of system’s freedom. Theoretically N was infinite. Supposed that 

the number of observation data was s 

1i
T  was written as 
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Because the responses were ergodic, then iR  was written as 
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With Eq.（13）and Eq.（14）
1i

T  could be written as 
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In the same way, 
2 1i

T


 could be written as 
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With Eq.（2.9）, Eq.（2.15）and Eq.（2.16）
1i

T  and 
2 1i

T


could be written as 
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Here definitions of observed matrix iO and controllability matrix i were given,
 [4] 

which were written as 
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i d dA G A G G                   （2.20） 

For 2n order linear time-invariant systems, the sufficient and necessary condition of controllability and 

observability was that the rank of iO  and i  was 2n. From the formula of 
1i

T , its rank was also 2n. 

Because of observed noises, the rank of 
1i

T  was no less than 2n. Generally singular values caused by 

noises were far smaller than those caused by true data.  

In order to reduce the effects of noises, truncated singular value decomposition was used that made the 

singular values caused by noises zeros. This was a common signal processing method. 

1i
T  was written as by singular value decomposition 
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where U 、V  were orthogonal matrix, and 
T TUU U U I  ，

T TVV V V I   , S  was diagonal 

matrix, and 
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1
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With Eq.（2.15）and Eq.（2.21），the following conclusion was obtained. 
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The inverse matrix of W was written as 
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Then the expression of iO  and i  were written as 
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In the same way, 2 1iT   was written as 
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Supposed that  
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Because W was unknown, dA could not be calculated. From Eq.（2.29）, it was known that 
dA   could be 

obtained. Since W was non-singular, dA  was similarity matrix of
dA  .They had the same eigenvalues, from 

which the frequency could be gotten. Then how to get mode shape was deduced. Supposed that the eigenvectors 

of dA  and 
dA   were d and 

'

d .The relationship between them was written as 

' =  d dW                       （2.30） 

Supposed that 
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From the above formula, it was known that 
iO   and i

  could be obtained.  

From the formula of iO , it was known that the n  
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Supposed that the first n rows was dC , iO  and 
iO   could be written as 

d dC C W                        （2.33） 

then 

-1

d dC C W                         （2.34） 

The conclusion was written as 

' 1

d d d d d dC C W W C                 （2.35） 

where d dC   was the mode shape. Then if 
dA   was obtained, the frequency and mode shape could be gotten. 

3. Numerical experiment 

Supposed a three DOF lumped mass system shown in Fig.1 The mass, rigidity and damping of each were 

1000kg, 1000 N m and 40 N s m , Sampling frequency was 50Hz and sampling point was 8000. 
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Fig.1 three DOF lumped mass system 

The identification results were shown in table 1. 

From table 1, it was known that covariance-driven stochastic subspace method could identify frequency 

accurately, while the accuracy of mode shape was ordinary. Furthermore, the number of Hankel matrix row may 

affect the accuracy of identification results. 

The reasons of error were written as follows: 

1. The observed data was limited. 

2. The truncated singular value decomposition was used that may eliminate the signal data. 

 



 

 

Table 1 identisfication results under different noise 

 

fundamental 

frequency

（Hz） 

second order 

frequency（Hz） 

third order 

frequency

（Hz） 

Fundamental 

mode shape 

second 

order 

third 

order 

truth-value 0.445 1.247 1.8019 

0.445 -1.247 1.8019 

0.8019 -0.555 -2.247 

1 1 1 

no noise 0.4424 1.2386 1.7849 

0.4982 -1.2432 0.8633 

0.8407 -0.6093 -1.7644 

1 1 1 

relative error 0.58% 0.67% 0.94% — — — 

SNR 90 0.4424 1.238 1.7843 

0.4972 -1.2439 0.8658 

0.8397 -0.6096 -1.764 

1 1 1 

relative error 0.58% 0.72% 0.98% — — — 

SNR 80 0.4423 1.2374 1.7826 

0.4968 -1.2424 0.8532 

0.8385 -0.609 -1.763 

1 1 1 

relative error 0.61% 0.77% 1.07% — — — 

4. Conclusion 

The parameter identification was an important content of structure damage detection. It could be divided 

into determinate excitation method and ambient one according to the source of excitation. The parameter 

identification based on the ambient excitation was practical, since it didn’t need excitation equipment and caused 

no damage to structures. The principle of the covariance-driven stochastic subspace identification method was 

deduced in detail. The method used the singular value decomposition technique. How to get the modal 

parameters from the matrices obtained from the singular value decomposition was a key problem, which hadn’t 

been proved strictly by now. This thesis gave the process in a systematic way. Numerical results showed that the 

precision of modal parameters could be improved strikingly by extending matrices, and the frequency of 

excitation also could be identified when it was a sine or cosine function. Because this hadn’t been proved in 

theory, the experiment data were not given in this paper. 
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