
SAFECAST Project: European research on seismic 
behaviour of the connections of precast structures 
 
  
  
G. Toniolo 
Politecnico di Milano 
  
 
 

 
 
 
SUMMARY: 
SAFECAST Project is the last of a long series of co-normative researches that supported  the standardisation of 
precast structures within Eurocode 8. The paper presents the activity performed by the 16 European partners. 
The seismic behaviour of four classes of connections is investigated: floor-to-floor, floor-to-beam, beam-to-
column and column-to-foundation. The experimental qualification is made in terms of strength, ductility, 
dissipation, deformation, decay and damage. More than 100 cyclic and dynamic tests have been performed in the 
laboratories of Lisbon, Milan, Ljubljana, Athens and Istanbul. But the most relevant series of tests have been 
performed at ELSA Laboratory of the JRC of Ispra, where a full-scale prototype of a three storeys precast 
structure has been subjected to pseudodynamic and cyclic tests. Other authors are presenting the details of any 
specific testing activity. This paper presents the design criteria deduced from these activities, as collected in the 
final document of design rules. 
 
Keywords: precast structures, connections, cyclic & dynamic tests. 
 
 
1. INTRODUCTION 
 
The first testing campaign has been carried out on 1994 when a first draft of Eurocede 8 has been 
prepared with a section dedicated to precast structures. To make up for the lack of experimental data, a 
number of cyclic and pseudodynamic tests has been performed on precast columns in pocket 
foundations at ELSA Laboratory of Ispra (see Figure 1). These tests gave the required demonstration 
that precast columns behave very well, like the corresponding cast-in-situ ones, but also better because 
there are no bar splices and no danger of stirrup packaging due to their horizontal casting position (see 
Saisi & Toniolo 1998). 
 
In the typical arrangement of one storey industrial buildings (see Figure 2), the role of the hinged 
connections had to be investigated in comparison to the monolithic joints proper of cast-in-situ 
construction. This has been done first with non linear dynamic numerical comparative simulations 
made on two similar prototypes of one storey structures, one precast and the other cast-in-situ, 
designed with the same base shear resistance (see Biondini & Toniolo 2002). 
 
The experimental verification of the numerical results came from the pseudodynamic tests performed 
on 2002/2003 again at ELSA Laboratory of Ispra within an European Ecoleader Programme. Two full 
scale prototypes of one storey structures (see Figures 3a-b) with the same base shear resistance have 
been submitted to the same accelerogram. The results gave the expected demonstration that the two 
arrangements have the same seismic capacity: the cast-in-situ structure in its more numerous critical 
regions dissipates the same amount of energy dissipated by the precast structure in its fewer and larger 
critical regions dimensioned as they are for higher moments. It is the global volume involved in 
dissipation and not the number of plastic hinges that gives the measure of the energy dissipation (see 
Biondini & Toniolo 2004). 
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Figure 5: Beam-to-column joint         Figure 6: Beam-to-column joint     Figure 7: Column-to-found. joint                                
NTUA Lab. – Athens                    ITU Lab – Istanbul                              POLIMI Lab. – Milan 

 
 

 
 

Figure 8: Frame modulus                                                       Fig.ure 9: Beam-to-column joint 
LNEC Lab. – Lisbon                                                        UL Lab. – Ljubljana 

 
 
More than one hundred of such tests have been performed in all in the quoted laboratories providing a 
large data-base that is now the basis for any possible improvement of the related technology and  
design. Following the due interpretations a manual containing the Design rules for connections of 
precast structures has been drafted as presented in Chapter 3. 
 
 But the most important series of tests has been performed between June and August 2011 at ELSA 
Laboratory of Ispra. Figure 10 shows the full scale prototype of three storeys structure installed against 
the reaction wall of that laboratory at an advanced stage of erection, while Figure 11 shows the same 
prototype completed with all its components. The dimensions are about 16 by 16 m in plan and more 
than 10 m in elevation. It is the bigger prototype ever tested in that laboratory and one of the biggest 
ever tested in the world. From the experimentation a complete information has been obtained about the 
seismic behaviour of this type of structures in terms of reliability of the analysis, displacement control 
and effectiveness of connections system, as reported by Negro, Bournas & Molina 2012 and Bournas 
& Negro 2012.  
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-deformation, that is the ultimate deformation at failure or functional limit; 
-decay, that is the strength loss through the load cycles compared to the force level; 
-damage, that is the residual deformation at unloading compared to the maximum displacement or the 
details of rupture. 
 
For any single type of connection strength is specified with the definition of: 
-the behaviour models related to the resisting mechanisms of the connecion; 
-the failure modes of the resistant mechanisms; 
-the calculation formulae of the ultimate strength for any failure mode. 
 
For what concerns ductility the connections are classified on the basis of the force-displacement 
diagrams obtained from the experimentation: 
-brittle connections for which failure is reached without relevant plastic deformations; 
-over-resisting connections for which, at the functional limit, failure has not been reached: 
-ductile connections for which a relevant plastic deformation has been measured. 
Ductile connections are again classified in: 
-high ductility with a displacement ductility ratio of at least 4,5; 
-medium ductility with a displacement ductility ratio of at least 3,0; 
-low ductility with a displacement ductility ratio of at least 1,5. 
 
This classification of ductility refers to the connection itself. This ductility has not direct reference to 
the global ductility of the structure. Ductile connections may give or not  a relevant contribution to the 
energy dissipation at the no-collapse limit state of the structure depending on their location within the 
structural assembly and on their relative stiffness. In general all the connections, ductile or not ductile, 
shall be over-proportioned by capacity design with respect to the critical regions of the structure. 

 
For what concerns dissipation the connections are classified on the basis of the specific histograms 
obtained from the experimentation: 
-non dissipative with specific values of dissipated energy lower than 0,10; 
-low dissipation with specific values between 0,10 and 0,30; 
-medium dissipation with specific values between 0,30 and 0,50; 
-high dissipation with specific values of dissipated energy over 0,50. 
Medium dissipation corresponds to well confined reinforced concrete sections under alternate flexure 
and high dissipation can be achieved with the use of special dissipative devices. 
 
For a direct comparability of the results, the quantification of the properties quoted above has been 
carried out by means of tests performed following the procedures described in a special Protocol for 
connection testing. From monotonic (push-over) tests the first information about the yielding limit, the 
maximum force, the ultimate deformation and the ductility ratio is obtained. From cyclic tests, 
performed following a standard loading history, information about the strength variation, the force 
decay and the energy dissipation is obtained. 
 
3.1 Beam-to-column dowel connection 
 
Among the different types of beam-to-column connections the qualification of a traditional wide 
spread one is presented. Figure 12 shows this type with the details of a beam placed on a supporting 
column. In the case (a) two dowels protrude from the top of the column and enter into the sleeves 
inserted in the beam. The sleeves are filled with no-shrinkage mortar of adequate strength to ensure by 
bond the anchorage of the dowels. The anchorage can also be ensured providing the dowels with a cap 
fixed at the top with a screwed nut. In any case the sleeve shall be filled in with mortar to avoid 
hammering under earthquake conditions. The case (b) refers to the same technology but with only one 
dowel. In the transverse direction the use of two dowels improve the resistance against overturning 
moments. Due to the much lower stability against overturning moments the use of one only dowel is 
not recommended especially with reference to the uneven load conditions during the construction 
stages. The beam usually is placed over a pad to localise the load out of the peripheral edges of the 
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In expectation, under seismic conditions, of a plastic hinge at the base of the column, the length of this 
plastic hinge finds some difficulties to be determined because of the uncertain effectiveness of the 
longitudinal reinforcement in the lap zone of the bars. In any case the formation of the plastic hinge in 
a raised position over the lap length shall be avoided since for this position the displacement ductility 
of the column would be reduced. More reliable results and possibly a higher displacement ductility can 
be obtained moving upwards the lap zone so to leave a sufficient length of single (non overlapped) 
reinforcement at the base of the column, provided these lower bars are weaker and connected to the 
sockets with proper provisions that don’t endanger their ductility. 
 
The connection shall be verified for the action of the (plastic) ultimate moment MRd=MRd(N) at the 
base of the column with the correspondent contemporary axial force N and of the shear V. This 
calculation can be performed in the two main directions independently. The due overstrength factor R 

shall be added as specified hereunder. The lap length of the lower bars with the upper bars of the 
column shall be overproportioned applying the same factor R and this calculation is taken for granted 
in the following points. Due to their expected brittle failure modes, in general terms for a good ductile 
behaviour the local devices (sockets, bushes, bolts,…) with their coupling provisions (welding, 
threading, pressing,…) shall be over-dimensioned by R with respect to the connected elements to 
which a ductile behaviour is required. 
 
Figure 15 shows the detail of the resisting mechanism of the foot section of the column subjected to 
the combined bending moment RMRd and axial action N and to the shear RV. Assuming that at this 
level of action the tensioned lower steel bars are at their maximum ultimate capacity Fu , the anchorage 
verification shall be referred to a correspondent pull-out force. The failure modes are listed hereunder 
together with the corresponding verification formulae: 
 
For fasteners well spaced among them and from the foundation edges, with reference to the symbols 
described in Figure 15 and with R overstrength factor, the following verifications shall be performed. 
a – failure of the fastener subjected to the tensile force coming from the upper reinforcement: 
 
 FRmin  R As fym   
 
where FRmin  is the minimum steel ultimate capacity of the fastener declared by the producer, As is the 
sectional area of the corresponding upper reinforcement, fym=1,08fyk is the mean yielding stress of the 
steel bars. 
b – pull-out of the head-fastener subjected to the maximum upper force Fu with concrete cone-failure: 
 
 k √( fck,cube h

3) / C  R Fu  
 
where Fu=min{Asfym , FRmax}, FRmax=1,2FRmin and for current products k=7,0 may be assumed. 
c – sliding shear failure at the foot section in the design situation corresponding to RMRd , N and RV: 
 
 1,5 Ad √(fcd fyd) + 0,25 b x fcd  V 
  
where V is the shear corresponding to RMRd, Ad is the sectional area of the dowel not yielded by the 
moment, fyd is design strength and b and x are the width and the depth of the compressed part of the 
concrete section.  
 
Tests have been performed on different prototypes with different arrangements of the connection 
showing different ductility capacities (see Dal Lago, Lamperti & Toniolo 2012). Some early failure 
occurred due to the rupture of defective welding of the socket, pointing out the importance of a correct 
coupling technology. When a correct coupling is made, the arrangement of weak bars under the lap 
zone moved in an upper position can save the full “medium” ductility and dissipation capacity of the 
column.  
 



 
4. CONCLUSIONS 
 
The work done in Safecast Project allowed to achieve a good knowledge on the behaviour of the 
connections of precast structures, enabling to have a reliable design under seismic action. All the rules 
given by the specific manual for the calculation of the resistance are based on the assumption to apply 
the capacity design criterion for the calculation of the action. In some cases the application of capacity 
design for the proportioning of the connections is simple and immediate: with reference to the hinged 
beam-to-column connections of one storey structure, the horizontal force at the top of the columns can 
be calculated from the resisting moment Mrd of the section at the critical region at the base of the 
columns with H=RMrd/h, where h is height of the column and R is the due overstrength factor. For 
multi-storey structures the equilibrium around the base support gives H1z1+H2z2+H3z3+…=RMrd and 
the problem remains indeterminate, depending on the ratio between the storey forces Hi that are 
applied at the different levels zi. Some approximate solutions are proposed in Biondini, Tsionis & 
Toniolo 2010 and Fischinger, Rejek. & Isakovic 2010. Also indeterminate remains the distribution of 
the diaphragm forces transmitted among the floor elements through their connections. A solution is 
suggested by Ferrara & Toniolo 2008 with reference to the roofs of one storey structures. But an 
inadequate approach is still now applied to the design of the fastening systems of cladding panels as 
pointed out by lesson of recent earthquakes (see  Colombo & Toniolo 2012). This is a pending 
problem on which the research shall be addressed in the future years. 
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