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SUMMARY: 
This study investigates on the response of base isolated structures considering yielding of superstructure. The 
objective is to clearly show the influence of yielding on the response of the structures, and to develop theoretical 
rules to predict ductility demand. A 2DOF model has been developed which idealizes a typical 5-story base 
isolated building. The superstructure is characterized as elastoplastic while the isolation system is assumed as 
linear elastic with various isolation system natural periods and damping ratios. Results indicate that a decrease in 
superstructural strength significantly increases ductility demand, but leads to a reduction in the maximum 
displacement at the isolation level. For the estimation of ductility demand of base isolated structures considering 
nonlinear behavior of superstructure, theoretical considerations are described based on the steady-state vibration 
of 2DOF systems subjected to harmonic excitations. This theoretical framework shows good agreement with 
results from response history analysis. 
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1. INTRODUCTION 
 
In recent years base isolation has become an increasingly applied structural design technique. Many 
types of structures have been built using this approach. The ideas behind the concept of base isolation 
are quite simple, by adding horizontally flexible elements called isolators between the structure above 
and its base, thereby isolating the building from the horizontal components of ground motion. As a 
result, earthquake motions are not transmitted up through the building, or at least greatly reduced 
(Naeim and Kelly 1999). 
 
Response of base isolated structure is significantly different from that of the fixed base structure. Fig. 
1.1(a) schematically shows the expected behavior of the isolated structure. Large relative displacement 
is concentrated at the isolation level and the structure above is considerably rigid. Therefore, a 
sufficient separation distance between the structure and surrounding moat walls must be provided to 
prevent pounding. Previous studies on base isolated structures have primarily focused on this case.  
For an earthquake greater than the design basis, insufficient seismic gap may cause pounding, as 
shown in Fig. 1.1(b), which can causes high impact forces and significant damage especially for the 
acceleration-sensitive components (Kasai et al. 1990, Tsai 1997). On the other hand, yielding of 
superstructure may occur as in Fig. 1.1(c) and affect the response behavior. 
 
Designed according to modern seismic provisions, base isolated structures are required to remain 
essentially elastic in the expected Design Basis Earthquake (DBE). Additionally, a separation distance 
must be provided to accommodate expected displacement in a Maximum Considered Earthquake 
(MCE). Therefore, yielding of superstructure is supposed to occur before pounding with surrounding 
walls. As yielding happens, reduction of stiffness allows superstructure to take part of the energy. As a 
result, the base ceases to move further and pounding is unexpected. However, little consideration is 
given to this situation. Therefore, objective of this study is to investigate the response of base isolated 



structure having nonlinear behavior of superstructure. The effects of yielding of superstructure on the 
displacement of the isolation level will be described. Moreover, some theoretical considerations to the 
estimation of ductility demand of the structures will be explained. This is to provide an effective tool 
for practice engineers in the design of base-isolated structures.  
 
 
2. ANALYSIS MODEL 
 
In this study, a typical base isolated structure is idealized as a 2DOF system. The analysis model is 
depicted in Fig. 2.1. Assuming equal floor masses with one additional isolation level, isolation system 
is idealized as a viscoelastic system with stiffness kb and damping coefficient cb. Superstructure is 
assumed elastoplastic with superstructural stiffness ks, damping coefficient cs, superstructural yield 
strength fsy, and ratio of post-yield stiffness to the elastic stiffness of superstructure p. Masses and 
stiffnesses are selected to obtain the desired periods and damping ratios from the following equations: 
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The design strength of base isolated structure is significantly reduced from that of the fixed base 
structure. Fig. 2.2 depicts a design spectrum which clearly explains the difference; superstructural 
yield strength fsy of a base isolated structure is designed based on the structure period which is 
considered close to the isolation system period Tb and damping ratio ζb.  
 
To avoid scatterness of the response data, superstructural yield strength is varied based on the 
maximum superstructural elastic force recorded from time history result for each particular ground 
motion. Then, for the selected strength reduction factor R, superstructural yield strength fsy is 
computed based on the definitions as follows:  
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Figure 2.1. Analysis model 

ms 

ks/2 

cs 

mb 

ks/2 

kb/2 cb kb/2 
ug 

us 

u 

ub 

Figure 2.2. Example of (R=2) Designed yield strength of superstructure
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Figure 1.1. Possible modes of behavior of base isolated structures 
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where fs0,el is the maximum superstructural force subjected to each particular earthquake. 
 
Note that the same R gives different values of superstructure yield strength fsy for different 
combinations of Ts, ζs, Tb, ζb and ground motion depending on the elastic responses.  
 
Responses considered in this study are deformations of isolation system and superstructure ub and us, 
respectively. The latter is discussed in form of ductility demand of superstructure μ, which is 
considerably an effective indicator of damage of the structure. Ductility demand of superstructure can 
be defined as: 
 

0s syu u   (2.4) 
 
In this study, superstructural period Ts is assumed as 0.5 second and superstructure damping ratio ζs is 
0.02. Six isolation systems are considered, with period Tb equals to 2, 3, and 4 sec., and damping ratio 
ζb of 0.10 and 0.30. The SAC suites of ground motions for the Maximum Considered Earthquake 
(MCE) level for the Los Angeles area, LA21-LA40, are used. Following modern US building code 
provisions, the superstructure is expected to remain elastic for the expected Design Basis Earthquake 
(DBE), an event whose response spectrum is 2/3 of the MCE (McGuire 2004, Somerville et al. 1998). 
Thus, the structure designed according to the code is represented by the model having R = 1.5. 
 
 
3. YIELDING OF SUPERSTRUCTURE 
 
3.1. Time history results 
 
Fig. 3.1 shows two example cases of dynamic response of a base isolated structure having Tb = 2 sec., 
ζb = 0.10, and p = 0 is subjected to the LA29 excitation. Peak ground acceleration of this ground 
motion is 0.81g. Fig. 3.1(a) and (b) show respectively superstructure displacement us and base 
displacement ub. Solid lines represents the behavior when R = 1.0 in which no yielding occurs. The 
superstructure performs an elastic behavior and superstructure displacement is relatively small 
compare to the base displacement, which is the expected behavior of base isolated structures. For this 
particular cases (LA29), maximum elastic superstructure displacement us0,el is 2 cm and maximum 
isolation displacement ub0,el is 29 cm.  
 
Dotted lines represent the case when R is increased to 1.5 in which superstructural yield strength is 2/3 
of the maximum superstructural force observed in the elastic case. Superstructural yield displacement 

Figure 3.1. Response history results of a Tb = 2 sec., ζb = 0.1 structure subjected to LA29 excitation 
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usy can be computed by dividing the maximum elastic superstructural displacement us0,el by strength 
reduction factor R, gives usy for this case 1.33 cm. As superstructural strength reduces, a single yield 
excursion occurs at 12.3 sec, as observed in Fig. 3.1(a), resulting in the maximum superstructure 
displacement us0 at 11.3 cm and a large residual structural displacement. However, Fig. 3.1(b) shows 
that yielding of the superstructure ceases the base to move further so the maximum base displacement 
ub0 is reduced from 29 cm in the elastic case to 25.3 cm. This indicates that weaker structure decreases 
the possibility of pounding.  
 
3.2. Trends of superstructure ductility demand 
 
Strength reduction factor R is varied from 0.1 to 4.0 to study the ductility demand. Results indicate 
that yield strength has a significant effect on resulting ductility demand in the superstructure. Fig. 3.2 
presents the ductility demand observed from the model for isolation system period Tb = 2 sec. Each 
graph corresponds to a distinct isolation system damping ratio ζb. Responses from 20 earthquakes are 
plotted along with the median shown as red lines. The trends are clearer explained in Fig. 3.3. As 
superstructural strength decreases, ductility demand of the superstructure increases dramatically. 
When R ≤ 1.0 in which the superstructure remains in the elastic range, ductility demand is equal to 
strength reduction factor R for every isolation period and damping ratio. When R > 1.0, lateral force 
acting to the superstructure exceeds its elastic capacity, therefore, yielding occurs and isolation period 
Tb and damping ratio ζb begin to take effects. An increase in isolation period (softer isolator) resulted 
in an increase in ductility demand. Moreover, an increase in isolation damping results in minor 
reductions in ductility demand, particularly long period cases.  
 
Fig. 3.4 presents the reduction of the base displacement for different isolation systems. Each data point 
represents median of the ratio of the maximum base displacement to the maximum base displacement 
for elastic superstructure response, ub0/ub0,el, observed from each earthquake. The maximum base 
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Figure 3.2. Ductility demand and median  
response from 20 ground motions 
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Figure 3.4. Reduction of ub0/ub0,el ratio observed from the median responses 
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displacement ub0 is apparently reduced from the elastic response when yielding of superstructure 
occurs. 
 
 
4. ESTIMATION OF DUCTILITY DEMAND  
 
For better understanding, steady state response of base isolated structure due to harmonic excitations 
with various amplitudes and excitation frequencies is investigated. In this chapter, theoretical 
considerations of the system will be developed and then compared with time history response 
observed from the model.  
 
4.1. Equivalent viscoelastic system 
 
For an elastoplastic system, the dynamic properties of this structure vary according to its velocity and 
displacement. Therefore, the equivalent viscoelastic system is developed to have the same maximum 
superstructure deformation us0. The area with in the loop is also identical, to maintain the same amount 
of energy dissipation. Consider a structure with initial stiffness ks, damping coefficient cs, post-yield 
stiffness ratio p, and yield strength fsy, having maximum ductility demand μ. Fig. 4.1 presents 
hysteresis curve of the elastoplastic system and the equivalent viscoelastic system. Equivalent 
superstructural stiffness and damping coefficient, ks,eq(μ) and cs,eq(ω,μ) can be defined as a function of 
excitation frequency ω and ductility demand μ (Kasai and Kawanabe 2005). 
 
The equivalent stiffness ks,eq(μ) is reduced from the initial stiffness ks , and is geometrically obtained 
from the hysteresis loop (i.e. secant stiffness at us0). Then, equivalent circular frequency ωs,eq(μ) is 
obtained as  
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Or written in terms of equivalent vibration period, 
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While, strain energy stored at the maximum deformation is 
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The energy input to superstructure is dissipated by two sources, viscous damping of the system Ev, and 
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Figure 4.1. Hystereses of the elastoplastic system and the equivalent viscoelastic system 
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hysteretic energy absorbed by plastic deformation Ep, which causes permanent deformation and 
damage to the structure. Both energy dissipations can be approximated as 
 

2 2( , )v s syE c u     (4.4) 
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And the equivalent damping ratio ζs,eq(ω,μ) is estimated from the following equation: 
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Therefore, equivalent damping ratio and equivalent damping ratio of plastic deformation is 
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It should be note that ζv(μ) is a function of ductility demand μ only, it is independent to excitation 
frequency ω. However, ζp(ω ,μ) is a function of both ductility demand μ and excitation frequency ω. 
 
4.2. Steady state response of base isolated structures 
 
Response of base isolated structure is significantly different from that of the fixed base structure. 
When yielding occurs, stiffness of superstructure decreases. For fixed base structure, stiffness 
degradation results in significant energy dissipation and its effective frequency will move away from 
the excitation frequency that is causing the damage. Unlike the fixed base structure, superstructural 
yielding has only a minor effect on the system frequency and the overall isolated structure frequency is 
dominated by the elastic frequency of the isolation level. This agrees with previous study by Kikuchi 
et al (2008).  
  
Fig. 4.2 presents time history result of the steady state response of the 2DOF model having Tb = 2 sec. 
and ζb = 0.1, subjected to a harmonic motion agsinωt with ground acceleration ratio ag/as = 0.5, where 
aS is the yield acceleration of superstructure, and frequency ratio ω/ωb = 1. The natural frequency that 
governs the response of superstructure is the elastic isolation circular frequency ωb. Hystereses of the 
superstructure and isolation system for this example case are shown in Fig. 4.3. If the superstructure 
remains in elastic range, the isolation system will performs a perfectly ellipse hysteresis. However, 
yielding of superstructure results in a slight distortion of the isolation system hysteresis, but the ellipse 
still remains. Therefore, the superstructure is considered as a lumped mass system subjected to a 
sinusoidal excitation üb=üb0sinωt with the circular frequency ω close to the natural frequency of the 
isolation level ωb. 
 
Fig. 4.4(a) presents the equivalent period as a function of ductility demand μ. Each line in the graph 
represents different value of post-yield stiffness p that is 0, 0.1, and 0.2, from top. As the structure 
yields, equivalent period increases. Also, equivalent viscous damping ratio is shown in Fig. 4.4(b) for 
the initial damping ratio ζs = 0.02. Fig. 4.4(c) and 4.4(d) present respectively the trends of the 
equivalent damping ratio of plastic deformation ζp(ω ,μ) and total equivalent damping ratio ζeq(ω ,μ), 
of the base isolated structure assuming ω = ωb at which Tb = 2 sec. Both ωs and ωb are constant and 
generally ωs is significantly larger than ωb for short building. Therefore, overdamped may happened 
because ζp(ω,μ) is propagated, especially when the superstructure is just a little yielding (e.g. μ = 3).  
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Figure 4.2. Steady stated response of a 2DOF system subjected to a sinusoidal excitation 

Figure 4.3. Hystereses of the steady state response of base isolated structure 
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4.3. Maximum displacement 
 
Consider the superstructure behavior as a SDOF system subjected to a sinusoidal excitation 
üg=üg0sinωt, the maximum displacement can be estimated as the following equation (Kasai and 
Kawanabe 2005). 
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Base on the findings that the superstructure response is significantly governed by the elastic frequency 
of the base, the superstructure is considered as a lumped mass system subjected to a sinusoidal 
excitation üb=üb0sinωt with the circular frequency ω close to the natural frequency of the isolation 
level ωb. As a result, we can estimate ductility demand of the superstructure as follows:  
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However, the maximum base displacement ub0 is apparently reduced from the elastic response when 
yielding of superstructure occurs. Therefore, using ub0 observed from time history response, we can 
estimate ductility demand by iterations combining Eqn.(4.1), (4.5) and (4.7).  
 
Each graph in Fig. 4.5 describes the ductility demand as a function of strength reduction factor R, for 
each isolation system damping ratio ζb considered. Each line in the graph corresponds to a distinct 
isolation system period Tb. Solid lines represent the ductility demand observed from time history 
model with post-yield stiffness ratio p = 0, from the suite of  SAC ground motions. Broken lines 
represent the ductility demand estimated by iterations. As the strength reduction factor R increases, 
ductility demand increases significantly. The estimation is underestimating, especially for high 
damping case, but still, showing the same trend. Note that the resulting ductility demand is found 
highly sensitive to the ub0/ub0,el ratio which causing errors in the estimation especially when R is small.  
 
 
5. CONCLUSIONS 
 
Parametric studies of the response of base isolated structures considering yielding of the superstructure 
have been described. Result proves that this simple model could be used to study the responses of 
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earthquake-induced pounding of base-isolation structures.  
 
A decrease in superstructural strength significantly increases ductility demand but the base ceases to 
move further so the maximum displacement at the isolation level reduces. As a result, to prevent 
pounding, the separation distance should be provided to accommodate the isolation level displacement 
which results in a shear causing yielding of the superstructure. The appropriate separation distance can 
be estimated depending on the dynamic properties of the structure. If the sufficient separation distance 
cannot be provided, reducing superstructural strength can reduce the possibility of pounding; however 
result in an increasing of ductility demand. 
 
An increase in isolation period (softer isolator) resulted in an increase in ductility demand. An increase 
in isolation damping results in minor reductions in ductility demand, particularly for long period cases. 
These trends can be theoretically explained. 
 
For the estimation of ductility demand of base isolated structures considering nonlinear behavior of 
superstructure, theoretical considerations have been described and showing the good trend along with 
the history results from the model. Steady state response shows that superstructural yielding has only a 
minor effect on the system frequency and the overall isolated structure frequency are dominated by the 
elastic frequency of the isolation level. Yielding of superstructure results in a slight distortion of the 
isolation system hysteresis but its ellipse hysteresis still remains. However, more improvements are 
needed, especially for high damping cases.  
 
Future study will be focused on a complete method estimation of ductility demand from the elastic 
response spectra. In addition, a method of selecting a good combination of superstructural strength and 
separation distance to obtain the minimum damage as indicated by ductility demand of the base 
isolated structure will be considered.  
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