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SUMMARY: 
This paper proposes a new vibration control system that realizes substantial earthquake response reduction 
utilizing torsional vibration. It consists of an eccentric core structure, perimeter frames with pin-joint 
post-columns that support only the vertical load, slab elements that transmit shear force between the core 
structure and the perimeter frames, and energy dissipation devices (dampers) installed in the perimeter frames. 
The dampers effectively absorb vibration energy by utilizing torsional vibration, which is usually avoided in 
seismic design. The system is nicknamed "Damper Tube Structure". The control effect and the damper 
requirements including the optimum damper distribution problem are discussed using a simple one-axis eccentric 
mathematical model based on the CQC method and the viewpoint of energy balance. To examine the 
effectiveness of the proposed simple design flow, earthquake response analyses with a two-axis eccentric model 
are conducted, and promising results that indicate the potential of the system are obtained.  
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1. INTRODUCTION 
 
This paper proposes a new structural control system that realizes substantial earthquake response 
reduction utilizing torsional vibration. It consists of an eccentric core structure, flexible perimeter 
frames with pin-jointed post-columns that support only vertical loads, slab elements that transmit shear 
force between the core structure and the perimeter frames, and energy dissipation devices (dampers) 
installed in the perimeter frames diagonally like a net. Inputted seismic energy is converted into 
torsional vibration energy due to the eccentricity of the core structure, and the dampers arranged in the 
perimeter frames effectively resist and absorb the energy utilizing torsional vibration, which is usually 
avoided in seismic design. The system is nicknamed "Damper Tube Structure (DTS)". It should be 
mentioned that fluctuation of seismic response against unexpected change of eccentricity is small 
because when the perimeter frames' displacements become larger due to torsional vibration, the 
efficiency of the damper increases. This mechanism gives the structure robustness and redundancy 
against fluctuation of design parameters and disturbances. Moreover, the deformation of the core 
structure can be kept small because of the feature of torsional vibration, and because the perimeter 
frames are pin-jointed flexible structures, a building with no damage can be easily realized even in 
severe earthquakes. In addition to these attractive features from the viewpoint of seismic design, there 
is a possibility of realizing a new architectural design in countries like Japan that are subject to severe 
earthquakes because the arrangement of the core structure is free and connections of other frames and 
slab elements can be pin-jointed. 
 
This paper first outlines the concept and components of this system, and then discusses the control 
principle, the effects and the damper requirements including the optimum damper distribution problem 
using a simple one-story one-axis eccentric mathematical model based on the CQC (Complete 
Quadratic Combination) method. Then, we propose a simple design flow including how to deal with a 
two-axis eccentric system, and demonstrate the earthquake response analysis results using a two-axis 
eccentric vibration model. 



 

2. CONSTITUTION OF DAMPER TUBE STRUCTURE 
 
The concept of the Damper Tube Structure (DTS) is "a structure of free-planning, low-stiffness and 
greatly response controlled”. In this system, though the core structure is the only stiffness element that 
resists static horizontal load, its arrangement in the plan is permitted to be free to ensure high planning 
flexibility. The other frames, including the perimeter frames, are designed as flexible structures such 
as pin-jointed post-columns that support only vertical loads. Compared with conventional seismically 
designed structures, the DTS has low stiffness and large eccentricity because the stiffness element is 
only the core structure, and its arrangement is permitted to be free. Thus, we introduce energy 
dissipation devices (dampers) into the perimeter frames diagonally like a net to control horizontal, 
torsional and vertical vibration. The slab of each floor is an important structural element that transmits 
shear force between the core structure and the perimeter frames. Fig. 1 shows a conceptual diagram of 
the DTS.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Conceptual diagram of Damper Tube Structure 
 

3. FUNDAMENTAL STUDY ON ONE-STORY ONE-AXIS ECCENTRIC MODEL 
 
3.1. Target Vibration Model and Fundamental Vibration Characteristics 
 
A typical plan of the model structure is shown in Fig. 2(a), and Fig. 2(b) represents its simplified 
one-story one-axis eccentric vibration model. In Fig. 2(b), G represents the centre of gravity, S 
represents the centre of stiffness and D is the centre of the dampers arranged in the perimeter frames at 
x= a/2 and y= b/2. Cx and Cy are the damper's total damping coefficients in the X and Y directions, 
respectively, and  expresses the distribution ratio of Cy to the right and left sides. 
 
 
 
 
 
 
 
 
 
 
 
 

     (a) Plan of model building      (b) One-axis vibration model 
Figure 2. One-axis eccentric vibration model 
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If we neglect the internal structural damping, the equation of motion of this system with ground 
acceleration 

gy  for Y direction is expressed: 
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where m is mass, I is rotational inertia, Ky is core structure stiffness in Y direction, K is core structure 
torsinonal stiffness around S, and e is eccentricity. d (damping eccentricity) and C(torsional damping 
coefficient around D) are expressed by: 

2/)21( ad            (3.2)  

xy CbCaC )4/()1( 22           (3.3) 

Here, we replace parameters I /m= i2 ,  Ky /m=y
2 ,  Cy /m=2hyy ,  C /Cy=r2  and K /Ky= j2 , and 

introduce non-dimensional parameters eie / , jij / , did / , rir / . If we express the 

rotation angle in terms of displacement at radius of gyrarion (x= i) as z / i  as shown in Fig.2(b), 
Eqn. 3.1 can be rewritten as: 
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where spring radius ratio j  is a very important parameter in the torsional vibration problem. As is 
well known, the relationship between the 1st mode and the 2nd mode of the one-axis eccentric model 
changes drastically at around 1j . Because the core structure is the only stiffness element in this 
system and the core area is several times smaller than the floor area, spring radius j must be smaller 
than the radius of gyration i, i.e.:  

1j            (3.5) 

We should pay attention to Eqn. 3.5 when considering the dynamic characteristics of this system.  

Suppose {y, z}T={u, w}Tei t  and substituting this into Eqn. 3.4 and introducing /y= , the 
no-damping equations of motion can be solved in a closed form, and the eigenvalues and the eigen 
vectors are expressed as: 
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The participation factor for Y-direction ground acceleration is expressed as:  
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Fig. 3 shows the relationship between the eccentricity ratio e  and the dynamic characteristics for 
various spring radius ratios. Fig. 3(a) shows the ratio of the eigen period T to Ty which is the natural 
period for translation with no eccentricity, (b) shows the participation function u at x=-i (soft side), 
and (c) shows the participation function u at x=i (stiff side). As mentioned above, relationship 
between the 1st mode and the 2nd mode changes drastically at around 1j , but when the eccentricity 

ratio e  becomes large, u tends to converge.  



 

 

 

 

 

 

 

 

 
 
 

   (a) Change of period T/Ty   (b) Participation function u at x=-i (c) Participation function u at x=i 
Figure 3. Dynamic characteristic of one-axis eccentric vibration model 

 
Next, we examine the system modal damping ratio realized by the dampers arranged in the perimeter 
frames. Since the damping matrix of this system is non-proportional to the mass and stiffness matrices, 
complex eigenvalue analysis is required to accurately evaluate the damping ratio, but here we try to 
estimate it by an approximate method using a diagonal element of the modal damping matrix using 
eigenvalues and eigenvectors of the no-damping system. System modal damping ratio hD realized by 
the dampers is expressed as: 
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Fig. 4 shows the change of modal damping ratio hD according to the change of eccentricity ratio e , 
where the side length ratio is b/a=1, and the total damping coefficient Cx and Cy for the X and Y 
directions are set as hx=hy=0.05. Results for three different damping distribution ratio  are shown in 
Fig. 4, and (a) is the case for =0 (Cy is placed intensively at x=a/2), (b) is the case for =0.5 (Cy is 
distributed to x= a evenly), (c) is the case for =1.0 (Cy is placed intensively at x=-a/2). The 
augmented damping ratio when the eccentricity is large is influenced by the damper distribution ratio 
, and we can recognize the difference of the spring radius ratio j  in the 1st mode but there is no 

significant difference in the 2nd mode. When the eccentricity ratio e  becomes larger than 0.3～0.4, 
the fluctuation of modal damping ratio becomes very small. For reference, some damping ratios 
obtained by the complex eigevalue analysis are also shown in Fig. 4, and it is confirmed that the 
approximate method employed here is sufficient for the scope of this study. 

 
 
 
 
 
 
 
 
  (a) =0    (b) =0.5   (c) =1.0 

Figure 4. System modal damping ratio (b/a=1, h0=0, hx=hy=0.05) 
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3.2. Damper Requirements 
 
We assume that the relationship between the maximum earthquake response value R and the building's 
damping ratio h can be expressed by: 
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where h in Eqn. 3.10 represents the sum of structural internal damping h0 and the augmented damping 
ratio hD by the dampers. N is a coefficient that indicates damping sensitivity, and is determined by the 
earthquake's characteristic (duration). The observed records with short duration and simulated 
earthquakes with long duration show that the value of N is approximately 25 to 50. If we assume that 
the velocity spectrum is almost constant in the range of the target building's vibration period, the ratio 
of the response displacement  of an eccentricity model to that of a no-eccentricity model (e=0) can be 
expressed by: 
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where y, hy, y are displacement response, augmented damping ratio by dampers and circular 
frequency for no eccentricity (e=0), respectively.  

Here we examine the required damping ratio on condition that the response displacement of no 
eccentricity (e=0) should be equivalent to that of a conventional seismically designed structure. 
Because the core structure is the only stiffness element in the DTS, the natural period becomes longer 
than that of a conventional seismically designed structure. From the design examples, the stiffness of 
the DTS is almost half that of the a conventional seismically designed structure (=frequency is almost 

2/1  times), and the required damping ratio hD for no eccentricity is determined by: 
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Transforming Eqn. 3.12, we obtain:  

 
N

hhD

1
0                (3.13) 

Evaluated hD is about 0.04~0.06 for the condition of N=25~50 and h0=0.02, and is realizable by oil 
dampers with good performance. 

3.3. Estimation of Earthquake Response by CQC Method 
 
Considering the participation function value at evaluation point based on the relationship shown in 
Eqn. 3.11, we estimate the ratio of response displacement of the eccentric model ( 0e ) to the 
no-eccentricity (translation) model. Here we adopt the CQC (Complete Quadratic Combination) 
method for superposition of the 1st mode response 1 and the 2nd mode response 2 considering the 
period's proximity and the large damping ratios. Maximum response value max is expressed by 1,2 
and modal correlation coefficient

12 as: 
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Fig. 5 shows an example of the estimated response displacement at various evaluation points for 
various radius spring ratios (but 1j ) using the three models with the ratios of side length b/a=0.5, 1, 



 

2 (a=1). The horizontal axis shows eccentricity e as well as eccentricity ratio e , the vertical axis 
shows the estimated response displacement normalized by the displacement for the no-eccentricity 
case. We set N=35, h0=0.02, hx=hy=0.05 and the damper distribution ratio =0.5 (equal on both sides). 
The Y-direction displacement at the centre of stiffness S (x=e) which represents response shear force, 
the Y-direction displacement at x=  a/2 (=perimeter frame's displacement), and the X-direction 
displacement at y= b/2 (=orthogonal perimeter frame's displacement) are indicated in the figure. This 
is a typical feature of the condition 1j . The stiff side displacement (x=a/2) is larger than the soft 

side displacement (x=-a/2) when the eccentricity ratio e  is small, but the soft side displacement 
becomes larger when the eccentricity ratio e  becomes larger than about 0.4. The displacement at the 
centre of stiffness (=shear force) decreases with increase in eccentricity, reaching about 60~70 % of 
the no-eccentricity case when e  is larger than about 0.4.  

Fig. 6 shows the effect of damper distribution ratio . Fig. 6(b) is identical to Fig. 5(b), but Figs. 6(a) 
and (c) show the cases of =0 (concentrated on stiff side) and =1 (concentrated on soft side), 
respectively. Focusing on the response control of perimeter frame displacement, the figures imply that 
there is an optimum damper distribution ratio optaccording to the eccentricity ratio e . On the other 
hand, the response at the centre of stiffness (shear force) does not depend on and decreases with 
increase in e . 

 
 
 
 
 
 
 
 
    (a) a=1, b=0.5            (b) a=1, b=1                    (c) a=1, b=2 

Figure 5. Change of response displacement (h0=0.02, hx=hy=0.05, =0.5, N=35) 
 

 
 
 
 
 
 
 
 
  (a) =0               (b) =0.5                       (c) =1 

Figure 6. Effect of damper distribution ratio (a=b=1, h0=0.02, hx=hy=0.05, N=35) 
 

3.4. Consideration of Response Reduction Principle from a Viewpoint of Energy Balance 
 
Here we consider the mechanism of the response displacement at the centre of stiffness (shear force) 
reducing when there is large eccentricity from the viewpoint of energy balance. Each mode's effective 
mass for Y-direction ground motion is expressed by:  
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Eqn. 3.16 indicates that the rotational inertia I and eccentricity e do not influence the sum of effective 
masses because =1. Therefore, if we assume that the vibration period of the target building is 
included in the period range where the velocity spectrum (or energy spectrum) is constant, the total 
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energy inputted into a two-degree-of-freedom system with eccentricity ( 0e ) is equivalent to that 
inputted into a single-degree-of-freedom system without eccentricity (e=0). Energy inputted into each 
mode in proportion to the effective mass is converted into translation and rotational direction potential 
energy, and the greater the conversion to rotational direction, the lesser the translation potential energy 
(translation displacement). If we put Es as translation potential energy and Er as rotational potential 
energy, their ratio for each mode is expressed by:  

22
24 1

:: 






 


e
jEE rs

             (3.17) 

Fig. 7(a) shows an example of energy distribution for 8.0j . As can be seen from the figure, the 

ratio of conversion into rotational potential energy becomes large when eccentricity ratio e  becomes 
large, and reaches about 50% when 4.0~3.0e . In addition, the energy absorption efficiency for 
rotational direction is far larger than that for translation direction in the DTS, so these features realize 
excellent response reduction of translational displacement (=shear force). Fig. 7(b) explains the 
relationship between the response displacement and the change of modal vibration characteristics due 
to the reduction of structural stiffness, introduction of an eccentricity and addition of damping, by 
using an explanatory displacement response spectrum for b/a=1, 8.0j , h0=0.02, hx= hy=0.05, =0.5, 
and N=35. We can thus comprehend how the response is reduced by the DTS from the diagram. 

 
 
 
 
 
 
 
 
 
 
 

(a) Eccentricity and energy distribution   (b) Change of modal characteristic and response displacement    
Figure 7. Conceptual diagrams explaining how response reduces with eccentricity 

 

3.5. Optimum Damper Distribution 
 
This chapter discusses the optimum damper distribution. The problem is to find the required total 
damping coefficient Cy and the optimum damper distribution ratio opt that keeps the perimeter frame's 
Y-direction response displacement within its X-direction displacement (=no-eccentricity direction). 
Instead of Cy, here we use hy, which expresses the damping ratio when e=0. Fig. 8 shows the required 
minimum damping ratio hymin and the optimum damper distribution ratio opt, examined on condition 
of h0=0.02, hx=0.05, and N=35. The results show that both hymin and opt depend on side length ratio b/a, 
and it is reasonable to choose  when e  is small, and  when e  becomes large. For hymin, it 
is understood that hymin is not always larger than hx, and there are special conditions where hymin can be 
0. This is because the dampers in the orthogonal frames work effectively when the side length ratio of 
the plan b/a is large, and it is possible to face this situation in an actual design process.  

The above results shown in Fig. 8 are very interesting but here we introduce an additional condition of 
hyminhx (=damping ratio of no-eccentricity direction) to leave a margin for parameter fluctuation 
under actual conditions. Fig. 9 shows the examination results for h0=0.02, hx=0.05, hyminhx=0.05, and 
N=35. The required damping ratio hymin and the optimum damper distribution ratio opt under the new 
condition are shown in the first row and the second row, respectively. Because the condition hyminhx 
is introduced, opt has a range. hymin and opt can be approximated by following simple formula: 
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8.122  jeopt       10  opt            (3.19) 

Since it is natural to set =0.5 when e=0, and considering the difference of the control effect by  
when e is small, it seems reasonable to introduce an additional condition opt0.5 to Eqn. 3.19. The 
third row of Fig. 9 shows the total Y-direction damper force Fytotal normalized by the damper force 
when e=0. Even if we boldly adopt very large eccentricity, the perimeter frame's displacement can be 
controlled within the permissible range without greatly increasing the number of dampers.  

 
 
 
 
 
 
 
 
 
 
 
 
 

    (a) a=1, b=0.5            (b) a=1, b=1                    (c) a=1, b=2 
Figure 8. Damper requirements (h0=0.02, hx=0.05, hy 0, N=35) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    (a) a=1, b=0.5            (b) a=1, b=1                    (c) a=1, b=2 

Figure 9. Damper requirements (h0=0.02, hx=0.05, hyhx, N=35) 
 

4. EARTHQUAKE RESPONSE ANALYSIS 
 
4.1. Design Flow for Two-Axis Eccentric Building 

Based on the study in the previous section, we summarize the design flow of the DTS as: 
(1) Design frames except core structure considering only vertical load. 
(2) Set target period for no-eccentricity as 2 times that for a conventional structure. 
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Eqn. 3.19

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6

h
ym

in
 

h
ym

in
 

h
ym

in
 

e
e

e
e

e
e

Eqn. 3.18

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

0 0.1 0.2 0.3

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6

e
e

e
e

e
e

F y
 t
o
ta
l 

F y
 t
o
ta
l 

F y
 t
o
ta
l 

e
e



 

(3) Design core structure according to target stiffness set in step (2). 
(4) Evaluate eccentricity ratios 

xe , 
ye  and spring radius ratios 

xj , 
yj  by eigenvalue analysis. 

(5) Estimate hmin and opt from Eqns. 3.18 and 3.19 for each direction (but hmin0.05, opt0.5). 
(6) Arrange dampers in perimeter frames and conduct earthquake response analysis. 
 

4.2. Earthquake Response Analysis using Two-axis Eccentric Model 
 
To assess the effectiveness of the above design method, we conducted earthquake response analyses 
using a one-story two-axis eccentric vibration model. Fig. 10 shows the plan of the model, and seven 
different locations of the centre of stiffness were selected as indicated in the figure. The translational 
period was set to 2.0 seconds. Eccentricity ratios and damper conditions are summarized in Table 1. 
Three simulated earthquakes set up for usual seismic design in Japan were selected here, and their 
time histories and velocity spectrums are shown in Fig. 11. Approximate values of N are also indicated 
in the figure. A 45 degree earthquake direction is selected in addition to the X and Y directions as 
shown in Fig. 10. In addition to cases (1)~(7), we also set up a model representing a conventional 
seismically designed structure named case (0) for comparison, with a vibration period and a damping 
ratio of T=1.4 seconds and h0=0.02, respectively.  
 
 
 
 
 
 
 
 
 

Figure 10. Two-axis eccentric vibration model (Tx=Ty=2.0 second, 8.0j , h0=0.02,) 

 
 
 
 
  
 
 
 
 
 
 
 
       (a) Ground acceleration time history          (b) Displacement response spectrum 

Figure 11. Time history and velocity spectrum of input wave 
 

Table 1. Model parameters  

case xe  ye  x y T (1st mode) hx hy 

1 0 0 0.50 0.50 2.50* 0.05 0.05 
2 0.371 0 0.50 0.54 2.82 0.05 0.05 
3 0.742 0 0.50 1.00 3.40 0.05 0.086 
4 0 0.223 0.50 0.50 2.64 0.05 0.05 
5 0 0.446 0.69 0.50 2.93 0.05 0.05 
6 0.371 0.223 0.50 0.54 2.91 0.05 0.05 
7 0.742 0.446 0.69 1.00 3.61 0.05 0.086 

        * purely rotation mode 
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Fig. 12 shows the response analytical results. By setting the damper properties for each direction 
according to Eqns. 3.18 and 3.19, overall the response displacement of perimeter frames of the 
two-axis eccentric model is controlled within the response of conventional seismically designed 
structure for the X, Y and 45 degree inputs. It is also confirmed that the shear force, which is 
equivalent to absolute acceleration, is drastically reduced for the case with eccentricity. These results 
demonstrate the feasibility and effectiveness of the proposed DTS system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        (a) Shear force          (b) Displacement at point A  (c) Displacement at point B 

Figure 12. Earthquake response analysis result (normalized by response of Case_1) 
 

5. CONCLUSIONS  
 
This paper has proposed a new structural control system that realizes substantial earthquake response 
reduction utilizing torsional vibration, which is usually avoided in seismic design. This system 
consists of an eccentric core structure, flexible perimeter frames with pin-jointed post-columns that 
support only vertical loads, slab elements that transmit shear force between the core structure and the 
perimeter frames, and energy dissipation devices (dampers) installed in the perimeter frames. Inputted 
seismic energy is converted into torsional vibration energy due to the eccentricity of the core structure, 
and the dampers effectively absorb the energy. This system is nicknamed "Damper Tube Structure 
(DTS)". In addition to the attractive features for seismic design, the DTS has a possibility of realizing 
new architectural design in countries like Japan that are subject to severe earthquakes because the 
arrangement of the core is free and connections of other frames and slabs can be simple pin-jointed. 

We first outlined the concept and the components of this system, and discussed the control effect and 
damper requirements including the optimum damper distribution problem using a simple one-axis 
eccentric mathematical model based on the CQC method and the viewpoint of energy balance. Then 
we proposed a simple design flow of the DTS including how to deal with the two-axis eccentric 
system, and conducted earthquake response analyses using a two-axis eccentric vibration model. The 
results are promising and the potential of the DTS was confirmed. Its applicability to high-rise 
buildings, cost performance, robustness of the control effect and a newly developed oil damper 
suitable for the DTS are to be discussed in another paper [Kano et al. 2012 ]. 
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