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SUMMARY:
Liquefiable soils within earth slopes are prone to lateral deformation, which is a cause of significant damage in 

earthquakes. In the recent decade, researchers have presented studies in which liquefied soils is considered as 

viscous fluid. In such manner, the liquefied soil behaves as non-Newtonian fluid, whose viscosity decreases with 

increasing shear strain rate. The current study uses computational fluid dynamic to predict liquefaction-induced 

lateral deformation of an infinite earth slope. Post-liquefaction residual strength of soil is incorporated to 

estimate Bingham viscosity within an Incremental Elastic Model. An iterative scheme is presented to estimate 

strain-compatible soil stiffness. Centrifuge model tests are numerically simulated in this study to validate the 

numerical simulation. The results, which are considered in terms of the displacements of the liquefied soil 

masses, confirm that the computed and the measured soil displacements are in agreement within a reasonable 

degree of precision.
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1.INTRODUCTION

 

Liquefaction of loose and saturated soil deposits has produced catastrophic failures during the 

earthquakes. This phenomenon produces disastrous consequences such as lateral spreading in free-face 

and gently sloping grounds. Liquefaction-induced lateral spreading has caused massive damages to 

deep foundation of buildings and bridges, embankments and lifeline systems. During the 1964 Niigata 

earthquake, lateral movement of liquefied soils resulted in considerable bending and failure of pile 

systems. In the same year, wide spread lateral ground deformations were observed for more than 250 

bridges and embankments along the Alaskan railroads and highways.

Several methods have been presented in the literature to predict the displacements produced by

liquefaction-induced lateral spreading. They can be classified into the following groups: (1) empirical,

(2) numerical, and (3) simplified analytical methods. Researchers have carried out numerical study to 

simulate behavior of liquefied soil as a reduced-stiffness solid. Based on this assumption, Yasuda et al.

(1992) proposed a simple static finite element analysis in two stages to assess the lateral spreading. In 

this approach, the stress regime in the ground is calculated using the elastic modulus before shaking 

starts and then the stresses are held constant and analysis is conducted again using the shear modulus 

decreased due to liquefaction. By the principle of minimum potential energy, Towhata and Orense

(1992) proposed a three dimensional finite element approach to predict the permanent displacements.

By assuming the liquefied soil as a visco-elastic material, Aydan (1995) proposed a finite element

approach based on an adaptive mesh technique. Moreover, Uzouka et al. (1998) developed a numerical 

method to predict lateral spreading of liquefied soil based on fluid dynamics. They used a numerical 

method by assuming liquefied soil as a Bingham fluid. Hadush et al. (2001) employed cubic 



 

interpolated pseudo-particle, CIP-based numerical scheme, by incorporating the Bingham viscosity to 

estimate the lateral displacement.

Literature survey reveals that variety of numerical methods has been developed to predict lateral 

spreading by treating the liquefied soil as solid or viscous fluid. Some of these approaches such as Iai 

(1989), Hamada (1998), and Wakamatsu (1998) assumed that deformation is regarded as small, less 

than 10%, while this assumption cannot be applied to lateral spreading.

This paper treats liquefied soil as fluid using the Bingham model, incorporating incremental elastic 

stress model in the framework of fluid dynamic. The liquefaction–induced lateral spreading is 

predicted from non-Newtonian flow analysis using FLOW-3D code that is one of the desirable 

computational fluid dynamics (CFD) programs for simulating flow problems. Computational fluid 

dynamic is a method of flow simulation in which standard flow equations such as Navier-Stokes and 

continuity equation are discretized and solved for each computational cell. FLOW-3D numerically 

solves the equations described above using finite difference (or finite volume). To determine viscosity 

and yield stress of the liquefied soil, the Bingham model which incorporates incremental elastic stress 

model was used. A centrifuge model test is simulated herein to predict lateral deformations of its 

laminar box which were monitored by LDVTs. An iterative numerical scheme was developed to 

calculate the strain-compatible shear modulus of the liquefied soil along the height of the simulated 

soil. Results of the numerical simulation have shown to be in accord with the measurements at the 

superficial soils, wherein displacement prediction is important, while over-estimated displacements are 

obtained at deeper zones.

2. THEORETICAL BACKGROUND

 

2.1.Incremental Elastic Stress Model

FLOW-3D code employs incremental elastic stress model to emulate visco-plastic materials such as 

Bingham materials which behave as a solid until reaching a certain yield stress. Beyond the yield 

stress, they behave like a viscous fluid. The state of stress for a Newtonian viscous fluid is:

T=2µ                                                                                                               (2.1)

where µ is the viscosity coefficient, is the strain rate tensor, and T is the Cauchy stress tensor. In

contrast, the stress state for a Hookean elastic solid is:

T=2GE                                                                                                                         (2.2)

where G and E are elastic modulus and strain tensor, respectively. Figure 1 illustrates a schematic

simplification of a visco-plastic model.

 

Figure 1. Pictorial view of visco-plastic model

A visco-plastic model predicts a corresponding rise in elastic stress that is linearly proportional to the 

strain. If further strain be imposed to a point such that the elastic stress exceeds the yield stress, the 

material yields and begins to flow as a viscous fluid with an equivalent viscosity.

This study uses Bingham model to predict the equivalent viscosity once elastic stress exceeds the 

yield stress. In the next section, the Bingham plastic is described to predict lateral deformation of 



 

liquefied soils. The employed code utilizes a fixed-mesh Eularian approach to compute the elastic 

stresses. For an element of fluid, the elastic stress description is:

∞

′ ′

where is the elastic stress tensor and is material coordinate which represent the deformation of 

material. is the local strain rate tensor:

[                                                                                               (2.4)

u is the local velocity vector. The time rate of change for Eq. 2.3 is:

+ u. =2G                                                                                            (2.5)

where stands for the elastic stress tensor represented in fixed coordinate system (Eulerian 

approach), which corresponds to the mesh used in FLOW-3D. The Mises yield condition is assumed 

as:

                                                                                                                       (2.6)

where Π is the second invariant of the elastic stress tensor and Y is a yield stress limit. If there is a 

region in material where the elastic stress exceeds the yield criterion, the elastic stress is relaxed by:

                                                                                               (2.7)

where is the yield limited elastic stress tensor. Eq. 2.5 is spatially discretized and the resulting 

elastic stress is added into the momentum equation as:

+ u.                                     (2.8)

The last term in this equation is divergence of elastic stress tensor.

Bingham Model

The Bingham model was employed to simulate the behavior of liquefied soil once the yield stress is 

surpassed. In order to predict the viscous stress, the Bingham fluid, which is a visco-plastic model 

considering the residual strength, is implemented. Uzuoka et al. (1998) confirmed that the Bingham 

model is applicable to the behavior of liquefied soil. They assumed the equivalent coefficient by the

following equation:

µ′ µ
ɣ

                                                                                                        (2.9)

in which,

ɣ                                                                                           (2.10)

where ɣ is second invariant of strain rate tensor or the effective strain rate. The components of the 

strain rate tensor are given by



 

=                                                                                                         (2.11)

and is the yield stress (minimum undrained strength). The residual strength of soil is taken into 

account to determine the minimum undrained strength, as discussed in the following section. The 

minimum undrained strength has an important role and has been used to indicate whether flow occurs.

3.Residual Strength

In this study, the residual strength of soil is considered to estimate the yield stress in Bingham model

and to determine the equation of equivalent viscosity of the liquefied soil. Therefore, it is important to 

have a reasonable estimation of this quantity. Several researchers have presented recommendations for 

this post-liquefaction parameter. Idriss and Boulanger (2008) have presented two recommendations in 

the EERI monograph; critical state approach ( ) and ( . These new recommendations are less 

conservative than the previous recommendations. Figure 2 shows various recommendations of residual 

shear strength versus the equivalent clean sand corrected SPT blow counts.

Seed (2010) reviewed Idriss and Boulanger (2008)’s report and indicated serious errors in plotting of 

these data. In fact, the former professor Seed (Seed 1987) had made an error in back-calculation of  

values for field performance cases in which liquefaction induced displacements had been large; 

resulting in considerable over-estimation of for those cases. Seed (2010) recommended the 

following procedure to estimate the post-liquefaction residual strengths. The heavy dashed line in 

Figure 2(b) is the best current set of recommendations based on critical state approach. The most valid 

explanation of the field data within the alternative based approach would be obtained using the 

heavy dashed line in Figure 2(a). 

(a) (b)

Figure 2. (a) Recommendations of Seed (2010) based on the interpretations of Idriss and Boulanger (2008), (b) 

Residual strength as a function of equivalent SPT blow counts (after Seed and Harder 1990 and Seed 2010)

4.Shear modulus of incremental elastic stress model

In the previous sections, the incremental elastic stress model was explained and method of

estimating elastic stress distribution was demonstrated. For this method of fluid dynamics, one has to 

estimate the shear modulus of the liquefied soil as the representative parameter of soil behavior during 

liquefaction. It is known that shear modulus of granular soils reduces during undrained cyclic loading 

up to liquefaction onset. Mean shear modulus of soil was taken into account as the identical parameter 

of the whole liquefaction procedure. To take this mean shear modulus into the simulation, the G/G0

reduction curves are implemented in the analysis, which are commonly employed in the well-known 



 

equivalent linear approximation of nonlinear response. Figure 3 shows the G-reduction (G/G0) curve 

proposed by Seed and Idriss (1970), which was used in the current study.

Figure 3. Average shear modulus reduction curve for sand (after Seed and Idriss, 1970)

Effective shear modulus is generated by normalizing the shear strain history within any given depth of 

soil layer using the displacement data and shear strain equation. For small displacement gradients and 

small rotation, the shear strain equation is:

                                                                                                       (4.1)

For the analysis with unknown displacement history, equivalent linear approximation is applicable. In 

this approach, it is common to gain the strain level of seismic loading in term of an effective strain 

which has been found to vary between 50 to 70% of the maximum shear strain. Here, the effective 

strain in each step can be predicted by this equation:

                                                                                             (4.2)

where is maximum shear strain at the depth under consideration.

5.CENTRIFUGE EXPERIMENT

 

The lateral spreading experiment in the inclined soil container of a centrifuge model test conducted 

during VELACS project is simulated herein. . The centrifuge VELACS model No. 2, which was 

conducted by Dobry and Taboada (1994), simulates a mildly inclined infinite slope with effective 

inclination angel of about ° Figure 4a shows the laminar container of this experiment and 

arrangement of the instruments. Also, Figure 5b illustrates time history of input acceleration. Table 5.1

presents the basic soil properties of Nevada sand which was used in the mentioned experiment.

Table 5.1. Soil properties in the centrifuge model test (Taboada 1995)

Soil                       Density                e max            e min

Nevada sand    1962 kg/ 40%     0.887         0.511                    



 

(a) (b)

Figure 4. (a) Illustration of VELACS centrifuge Model No.2, (b) Base acceleration in the centrifuge 

test

6.NUMERICAL MODELING PROCEDURE

 

The centrifuge tests were simulated using the described models in FLOW-3D. To simulate the free 

surface condition at the top of the container, the specific pressure boundary with zero fluid volume 

fraction ratios was utilized and non-slip wall boundary was specified for the other boundaries. The 

AH1 acceleration time history (shown in Figure 4b) was introduced as base acceleration to the base of 

the simulated container in non-inertial reference frame.

Determination of the analytical parameters of Bingham viscosity and incremental elastic stress was 

explained in the preceding sections. For the VELACS model No. 2, the following equation, which was 

proposed by Cubrinovski and Ishihara (1999), was employed to correlate relative density and SPT 

blow counts for the estimation of residual strength from the previously shown graphs .

For Nevada sand with and maximum and minimum void ratios cited in Table 1, SPT 

blow counts of about 10 is resulted in. Consequently, the residual strength in each approach can be 

easily derived from Figures 2 (a and b). Table 6.2 presents the residual strength according to Seed 

(2010)’s recommendation. The quantities were determined in the middle of soil layer as the 

representative of the whole layer.

Table 6.1. Estimation of residual strengths from various recommendations

(FC)%                            residual strength kPa

9.87                    7 11 7.5

By employing the weighted residual strength, the Bingham viscosity parameter can be found by the 

following equation once stresses tend to exceed the yield stress:

µ′ µ
ɣ

(6.2)

For incremental elastic stress, it is required to specify the shear modulus, G, and yield stress. The

residual strength of 7.5 kPa is considered as the yield stress. To drive the shear modulus, it is required
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to predict maximum shear modulus to assign the in equivalent linear approximation of shear 

modulus. Several researchers have been proposed a number of empirical equations as form of Eq. (6.3)

by various constants to determine the small-strain shear stiffness of soil.

                                                                                                            (6.3)

Table 6.2. Constants proposed for empirical equations (Kokusho, 1987)

An iterative operation has been utilized by assuming an initial G at small strain levels and using the 

estimated G to compute the response including the time histories of shear strain for any given layer. To

determine the effective shear strain, Eq. 13 along with the G-reduction curve were repeatedly used for 

estimating new equivalent linear for the next iteration. These steps are repeated until differences 

between computed shear modulus in two successive iterations fall below a prescribed value.

7. SIMULATION RESULTS AND DISCUSSION

 

7.1. Time history of ground displacement

Figures 5 (a to d) compare simulated and measured lateral displacements in the VELACS centrifuge 

model No. 2. As seen, the triggering points of lateral displacement roughly agree with the 

experimental results shown in Figure 5. Furthermore, the predicted displacements in the middle and 

top of the layer have acceptable trend compared with the measured values of lateral displacements. In

the deeper levels, however, the model overestimates the displacements. Inaccurate predictions in deep 

zones can be related to high equivalent viscosity in the lower levels of soil layer with the small shear 

strain rate happened due to the use of constant value of minimum undrained shear strength along the 

height. Similar observation was reported by Mounir (2006) for the deeper depths of the shaking table 

tests simulated by computational fluid dynamics.

References A F(e) n
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3300 .5

Iwasaki et al.(1978) 9000 .38

Kokusho (1980) 8400 .5



 

Figure 5. Comparison between the simulated and measured values of lateral displacements in the LVDTs level

(a) LVDT3, (b) LVDT4, (c) LVDT5, (d) LVDT6

7.2 SUMMARY AND CONCLUSION:

This paper presented a finite difference-volume fluid dynamic method to predict the liquefaction 

induced lateral spreading of liquefiable soils using Bingham model. Post-liquefaction shear modulus 

and residual strength were considered in the model to estimate the shear stress and equivalent 

viscosity. The numerical model was applied to a centrifuge model test simulating a mildly sloping 

sand deposit. The results show that the predicted lateral displacements at the top section of soil layer 

agree with the experimental results. At the bottom of soil layer, the results are over-estimated because 

of the small shear strain rate considered for the bottom sections. The iterative procedure, which was 

used in this numerical study, obtains compatible shear strains that are in agreement with those 

achieved by the back analysis of the centrifuge experiment.
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