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SUMMARY:  
Mesomechanics is widely applied to simulate the fracture process of concrete structures, while it's not capable of 
simulating a large-scale concrete structure owing to the huge computational capacity needed. For purpose of 
engineering practice, this paper presents an equivalent damage (ED) element for failure or damage analysis of 
large-scale concrete structures, and a practical external-interface with ANSYS is developed based on User 
Programmable Features (UPFs).The influence of mesoscale heterogeneity of concrete as approximately 
simulated by ED element, which is of relatively bigger size and assumed as homogeneous, is considered by 
randomly prescribed material properties according to the Weibull distribution law. The external-interface with 
ANSYS, which is portable and convenient to use, is developed as the basic computation tool. To justify the 
applicability and correctness of the proposed method for engineering purpose, seismic overload response 
analysis of Koyna Gravity concrete dam during the 1967 earthquake is presented. In addition, a group of 
meshing schemes with different sizes is addressed to investigate the effect of the sizes of ED elements and an 
optimized mesh size is determined based on the comparison among different mesh sizes. 
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1. INTRODUCTION 
 
It is commonly known that the large-scale concrete structure failures due to strong earthquakes will 
cause catastrophic consequences, such as the Koyna dam in India suffered severe damage cracking in 
1967. To eliminate the potential risks brought by structure failures, seismic safety evaluation of such 
structures is well recognized. Among them, the simulation of the fracture process of concrete, which is 
a complex heterogeneous material widely used for the construction of structures, is a crucial issue.  
 
For simplicity, it is convenient to take the concrete as a homogeneous material without considering the 
heterogeneity in engineering applications. In recent years, with the development of computer hardware 
and software techniques levels continual enhance, the mesoscale models have emerged as a powerful 
numerical procedure for simulating the fracture process and evaluating the macroscale response of 
concrete considering the heterogeneity, including the random particle model by Bazant et al. (1990), 
the lattice model by van Mier and his associates (1997), the mesoscale elastic-brittle model by Tang C. 
A.(2003), and M-H mesoscale mechanical model by Mahamed and Hansen (1999a, b). In all these 
models, the concrete is taken as heterogeneity material composed of three phases, i.e., mortar, 
aggregates, and interfaces between them at the meso-level and most work focus on static response of 
the laboratory specimens, while cases of practical engineering structures subjected to cyclic loading 
are not available. Then, instead of simulating the multiphase components of concrete, Zhong, H. et al. 
(2011) and Tang, X. W. et al. (2011) have extended to seismic failure modeling of high concrete dams, 
in which the structures are discretized by using mesoscale mesh of finite elements and the influence of 
heterogeneity of concrete is approximated by random distribution of material properties. 
 
In this present paper, we developed the Equivalent Damage (ED) element based on the mesoscale 



model in the commercial finite element (FE) code ANSYS (2007) for fracture process simulation of 
large-scale structures subjected to earthquake excitation, with the main purpose of providing practical 
tools for researchers and engineering practitioners. In the seismic analysis, the meso heterogeneity of 
concrete simulated by ED elements, which are with refined mesh at relatively meso-level, i.e., the size 
of the element is small enough in contrast to the structures and assumed as homogeneous, is 
considered by randomly prescribing the material properties in each ED element according to the 
Weibull distribution law. Meanwhile, in strong earthquake shocks, although the structures may go 
through strong nonlinear process and the numerical model has the potential to incorporate various 
factors including complicated geometry and applied loaded, flexibility of foundation and large 
computation, the ANSYS capabilities for analysis of nonlinear problems together with the user 
interface options available in the code have proved to be useful for such a seismic analysis. In addition, 
the user can benefit from the many built-in features of ANSYS, such as pre-processing, post 
processing and powerful computational capability. Base on that, the damage evolution and failure 
pattern of the Koyna gravity dam are investigated as a numerical demonstration. Furthermore, the 
effect of ED element size on simulation result is explored and an optimized mesh size is determined. 
 
 
2. SEISMIC ANALYSIS CONSIDERING HETEROGENEITY OF CONCRETE 
 
2.1. Heterogeneous of concrete  
 
As previously mentioned, the concrete is always divided into three phases at the meso-level in the 
simulation of failure process of concrete specimens in laboratories. However, it is unrealistic and 
unnecessary for large-scale structures to model exactly three phases of concrete in seismic analysis. 
Therefore, based on the characteristic of large-scale concrete, the structure can be idealized as a bigger 
sample space and discretized with finite elements at relatively meso-level, while each element referred 
to as ED element is assumed to be homogeneous and isotropic due to the influence of heterogeneous 
in such a small element for the structure is not relatively effective. To capture the heterogeneous 
characters of concrete, mechanical parameters of each ED element, including the elastic modulus, the 
Poisson’s ratio and the strength, are assumed to conform to the Weibull distribution law, whose 
probability density function is shown as follows: 
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where u is a given mechanical parameters of each element (such as the elastic modulus or strength); u0 

is average value of the corresponding parameter and m is the heterogeneity index which quantifies the 
degree of material heterogeneity in the sample space. According to the definition of the Weibull 
distribution, a greater m corresponds to a more homogeneous numerical model of structure, on the 
contrary, a more heterogonous model will be obtained. As a result, the concrete of large-scale 
structures can exhibit the feature of heterogeneous through refined discrete model with the ED 
elements whose mechanical properties are defined without uncertainty once the assignment process of 
properties has been completed.  
 
2.2. Damage evolution and failure criterion 
 
It is recognized that damage and nonlinear of concrete are leading mortality cause of the initiation and 
propagation of microcracks. In the proposed method, to simulate the behaviors of microcracks, all the 
ED elements are assumed to be with the elastic damage constitutive laws which are linear elastic until 
the damage occurs. Two damage evolution model for tensile and compression are applied for the 
definition of the constitutive relationship of the concrete and corresponding failure criterion, i.e. 
maximum tensile strain criterion and Mohr-Coulomb criterion are chosen as the damage threshold. 
 
For each ED element, the material is assumed to be undamaged linear elastic and isotropic before the 
initiation of damage. Then the stiffness of the element is assumed to degrade gradually as damage 



progress and Poisson’s ratio to be unaffected, with the elastic modulus of the damaged material given 
by 
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where E0 and E are the initial elastic modulus and damaged elastic modulus respectively and D 
represents the damage variable, which ranges from zero for the undamaged material to one for 
complete damaged state.  
 
For the tension introduced damage, the constitutive relation and damage evolution model for an ED 
element are illustrated in the Fig. 2.1. Hereinto, the Fig. 2.1(a) shows the bilinear stress-strain curve 
with the softening branch by a simple linear function, while the Fig. 2.1(b) shows the damage variable 
D at any given strain to describe the damage evolution process. When the maximum tensile damage 
criterion is met, damage of the ED element occurs and the stress-strain curve descends linearly before 
reaching a specified residual strength. It is followed by serious damage for ED element with a constant 
residual strength until the element is completed damage when the tensile strain is larger than the 
ultimate strain. As is shown in the Fig. 2.1(b), εt0, εtr, εtu represent the elastic strain limit, threshold for 
the residual section and the ultimate strain, respectively. η = εtr/εt0 characterizes the range of the 
descending section. Parameter λ stands for the ratio between residual strength ftr and ft0 and lager 
implies the stronger bearing capacity of the element after being damaged. 
 

             
(a) stress-strain curve                          (b) damage evolution 

 
Figure 2.1 Constitutive relation and damage evolution model for concrete in tension 

 
Corresponding to the tensile damage, a constitutive law is given in Fig. 2.2(a) in compression with the 
softening section by a power function under which shear damage is assumed to occur according to the 
Mohr-Coulomb criterion and the damage variable D is described in Fig. 2.2(b), where εc0 and εcu 
represent the elastic strain limit and threshold for the ultimate strain, respectively. 
 

             
 (a) stress-strain curve                            (b) damage evolution 

 
Figure 2.2 Constitutive relation and damage evolution model for concrete in compression 

 
When the structures are subjected to the external loading, considering the tensile failure is much easier 
to appear, the tensile damage is always checked first and the shear damage is omitted once the tensile 
damage occurs, while the shear damage is checked only when the tensile damage is not attained. In 



addition, according to the damage evolution damage model stated above, the cracking of concrete is 
taken to be coincident with only the completed damage ED elements, that is whose tensile strains 
attain or exceed the ultimate strain are taken to have cracked with a crack width equal to the ED 
element width. Furthermore, shear damage will lead only to degradation but not to the appearance of 
cracks. Based on these assumptions, the initiation, propagation and interaction of multiple cracks can 
be simulated easily. 
 
2.3. Incremental seismic analysis with iterations 
 
During the structures subjected to the earthquake excitation, once the strains of ED elements reach the 
damage threshold, the properties will weaken gradually and may complete damaged at last. Such a 
phenomenon is typical of a nonlinear problem, which can only be solved by incremental methods, 
with iterations for stress redistribution and removing the unbalance force. Consider a typical 
incremental step from time t to t + Δt, the equation of motion for structures at the time t + Δt can be 
written as  
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where [M], [C] and [K] are mass, damping and stiffness matrices of the structure discretized by ED 
elements, respectively; {u}, and {ü} are nodal displacement, velocity and acceleration, respectiv- 
ely; and {Fa} is the applied load vector. As shown in the Fig. 2.1(a) and Fig. 2.2(a), a damaged ED 
element is unload or reload elastically along the same path with its degraded elastic modulus. 
Therefore, based on the Newmark’s β method with constant average acceleration, i.e., β = 0.25 and γ = 
0.5, the Newmark assumptions should be modified to include the feature of iteration, that is 
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in which the right superscript i on each symbol indicates the number of iteration and the coefficients 
and those to appear are defined as  
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By the finite difference Eqn. 2.4, the Eqn. 2.3 of motion can be manipulated to yield the following 
equivalent stiffness equations: 
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in which {Fint} is the vector of restoring loads calculated from the element stresses.  
 
In accordance with the above-state methods, for each time step, the displacement increments {Δu}i can 
be obtained from Eqn. 2.6 using the elastic modulus in the last iteration of previous time step and total 
motion vector from Eqn. 2.4 at first, and then check whether or not there are damaged elements by the 
failure criterion stated in section 2.2 If no new damage appears, go to next time step without iterations. 
Otherwise update elastic modulus from Eqn. 2.2 and recalculate displacements and stresses with 
iterations until no damage occurs or the convergence condition is satisfied. 



3. ANSYS IMPLEMENTATION OF ED ELEMENT 
 
The commercial FE software ANSYS provides three tools, i.e. UPFs, ANSYS Parametric Design 
Language (APDL) and User Interface Design Language (UIDL) for user to customize and expand its 
existing capabilities. In this section, we describe the main features related to the implementation of the 
ED element through the user subroutine interface UserElem based on UPFs in ANSYS Version 11.0. 
Although implementing a non-standard finite element in ANSYS does impose certain restrictions, it 
also provides access to many of the available features. In our implementation, we will also give a 
general overview of the pre- and post- processing for the sake of facility of understanding and 
grasping the whole process and extending its application to a broader class of problems. 
 
3.1. Preprocessing: Model with ED element  
 
For the user-defined element, the element type will not be embedded in element library of ANSYS 
even after compiling and linking the user element subroutine into standard program. According to the 
programmer’s manual for ANSYS, ET, USRELEM and USRDOF commands are used to define the 
element type, element characteristics and nodal degree of freedoms (DOFs) of user element, respectiv- 
ely. It is worth noting that the name of the element must be user300 and ANSYS does not have 
capabilities for user element to preprocess and post process when KeyShape option which is the item 
of USRELEM is ANYSHAPE (that is, no specified shape). Because no restrictions are placed on the 
shape of ED elements only if the size is small enough, the pre- and post- processing are supplied by 
the user directly through the Graphical User Interface (GUI) or APDL. Therefore, other steps for 
analysis such as defining real constants, creating FE models, applying boundary conditions and loads 
and specifying solution options are similar to standard element. Alternatively, the standard element 
that has the same element characteristics (such as the number of nodes, dimensions and DOFs etc.) as 
the ED element is used in the mesh generation and modified by ED element using EMODIF command 
in the process of analysis in order to exert the advantages of GUI and APDL for complex structures. 
 
3.2. Equivalent Damage element definition 
 
UPFs are capabilities for which you can write your own FORTRAN routines and allow you to 
customize the ANSYS program to your needs, which may be a user-defined material-behavior option, 
element, failure criterion (for composites), and so on. In present method, the user subroutine UserElem 
which is used to develop the ED element can provide an interface to ANSYS code above the element 
level. The subroutine passes all element information (such as element characteristics, properties and 
motion vector of nodes etc.) needed to create a user-defined element and returns all data (such as 
stiffness, mass and damping matrices etc.) and results from the element to update the ANSYS database 
and files. To run an analysis including the user-defined subroutine, what we should do first is to design 
and program the custom subroutine UserElem which constitute the core of the implementation, and 
then compiling and linking subroutine to ANSYS should be accomplished so that the user-defined 
element can be employed by ANSYS. Compiling and linking UPFs on different system are described 
in detail in the manual (2007), so only the development of subroutine UserElem is summarized here. 
 
3.2.1. Modified effective force 
ANSYS internal procedures for solving the nonlinear equations through Newton-Raphson method are 
not applicable to solve the Eqn. 2.6, since there is a difference in iteration process between ED 
element and standard element (as show in Fig. 3.1). Fig. 3.1(a) shows an iteration process for standard 
element in which the resistant force vector {Fnr} are computed from configuration {ui} in last iteration 
and the difference between {Fa} and {Fnr} is the actual applied force in this iteration, whereas Fig. 
3.1(b) shows an iteration process for ED element with the applied force remaining constant. Therefore, 
minor modification is required to accommodate the effective force. In the nonlinear seismic analysis, 
the Newton-Raphson method is employed along with the Newmark assumptions, the equation with the 
feature of iteration can be written as 
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where [ ]K  with the same expression as in the Eqn. 2.6 and the effective resistant force {Fnr} is  
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where {Fint} is determined in the subroutine above the element level, while the inertia and damping 
effects are defined in the standard ANSYS use run. As can be seen in the Fig. 3.1, although [ ]K  and 
{Δu} stand for different means in two iteration process, the same expressions can be obtained. 
Therefore, [ ]K and {Δu} for ED element instead of standard element returns to ANSYS database by 
taking advantage of two important displacement vector, that is total displacement {ut} and iteration 
displacement {Δuit} at the last iteration. The effective force vector in Eqn. 2.7 is modified as  
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and the {Δu}i in Eqn. 2.4 is modified as {Δuit}, where the superscript a represents the actual motion 
vector in the last load step. However, as one of the output result, {ut} is not the actual response of 
structures due to the accumulation effect in each load step, while the actual response is the {Δuit} in 
the last iteration.  
 

               
(a) Solution for standard element                   (b) Solution for ED element 

 
Figure 3.1 The difference in iteration process between standard element and ED element 

 
3.2.2. ED element implementation in ANSYS 
On the basis of theory mentioned in section 2, the procedures of seismic analysis for concrete 
structures using ED elements in ANSYS are detailed as follows, and the part (c)-(e) is the ED element 
definition.  
 
(a) Creating FE model of the large-scale structure, applying boundary conditions and specifying 

solution options are done by using GUI and APDL (described in section 3.1). 
(b) After going into the solution stage, the load vector {Fa} is applied in each loadstep firstly, and then 
(c) ANSYS program gives element information from database to subroutine of ED element through 

the interface UserElem and runs the following code. To generate the target mechanical properties 
conformed to Weibull distribution law, the Monte Carlo method that generates the random number 
above all and combines with the probability density function in Eqn. 2.1 is implemented when first 
time entering the element. Otherwise, the mechanical properties defined as global variable 
(FORTRAN COMMON) are stored in a specified array and referenced in next iteration or other 
load steps. The strain ε of element is then calculated through the actual displacement ({u}t+{Δuit}) 
in current iteration to judge whether the element has been damaged. 

(d) Check if the damage variable (  for tension and for compression) is greater than where 
the superscript i indicates the current number of iteration, the superscript 0 denotes the last 
iteration of the previous load step and the subscript l indicates the current load step. If yes, the ED 
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element has been damage and the element will be checked if damage continues according to the 
corresponding damage model. Otherwise, perform the damage evolution model and failure 
criterion described in section 2.2 to judge. After determining the damage variable , the damaged 

elastic modulus will be update using the Eqn. 2.2 and  of each element is need to output in the 
external file for further post processing of crack simulation after convergence.  

i
lD

i
lD

(e) Determine the element matrix ([K] for stiffness, [M] for mass and [C] for damping) and effective 
force {FM} using Eqn. 3.3 If [C] is assumed to be the Rayleigh damping and α and β damping 
multipliers (ALPHA and BETA command) are defined in the standard ANSYS use run, additional 
damping effects will be applied to the ED element so that [C] should be not determined in this case. 
Similarly, stiffness matrix returns to ANSYS database is [K] rather than equivalent stiffness 
[ ]K due to the mass and damping effects has been considered in the use run.  

(f) Return all data and results to ANSYS database, the globe matrix is then assembled and response is 
calculated by ANSYS code. Then the convergence conditions are checked and determine to go to 
the next iteration step or the next load step. 

 
3.3. Post processing 
 
Due to the difference in the iteration process (described in section3.2.1) and total displacement of 
DOFs is not allowed to be modified, the response of structures stored in the .rst file is not the actual 
deformation. Therefore, we have output the actual motion vector into an external file in the specified 
format after convergence in each load step. After the solution is done, the external file contains all the 
relevant information of ED elements and DNSOL command is used to plot the deformation of 
structures through GUI. In addition, the ANSYS does not have capabilities to plot the process of 
initiation and propagation of multiple cracks because the code does not post-process the information 
generated by user-defended element. As stated in the section 2.2, the crack width of the concrete equal 
to the ED element width so that a simple approach which unselect the damaged ED elements 
according to damage information in each load step and the principal tensile stress is plotted 
simultaneously is present. We have used this approach for the numerical example that appears in 
section 4, this enables the multiple cracks to be seen clearly and forecast the trend to propagate. 
 
 
4. FAILURE ANALYSIS OF KOYNA GRAVITY DAM  
 
Based on the ED element embedded in standard ANSYS, the damage and fracture behavior of the 
Koyna gravity dam during the 1967 earthquake is provided to verify the mesoscale model as well as 
demonstrate the development of non-standard element for seismic analysis due to this problem has 
been extensively studied by other researchers. Also, the comparison is made with the failure pattern of 
the dam to explore the effect of sizes of the ED elements. 
 
4.1. FE discretization and Material parameters 
 
The values of material parameters for dam adopted in the analysis are similar to those by other 
investigators (Lee and Fenves 1998; Tang, X. W. et al. 2011): the dynamic elastic modulus E0 = 31.0 
GPa, the Poisson’s ratio v = 0.2, the mass density of concrete ρ = 2, 643 kg/m3 and the dynamic tensile 
strength ft = 2.9 MPa. Mechanical parameters of ED element are assumed to conform to the Weibull 
distribution and the heterogeneity index m is assumed to be 2 for elastic modulus and tensile strength 
and 100 for Poisson’s ratio. Fig. 4.1(b) presents the distribution of elastic modulus of dam and colors 
ranging from lighter to darker are used to describe the value of elastic modulus from lower to higher. 
Meanwhile, the parameters in the constitutive are listed in Table 4.1 (Hong Zhong et al. 2011). The 
dam-foundation interaction is neglected and the foundation is assumed to be rigid. The material 
damping is considered via the Rayleigh damping and the damping ratios for all modes of vibration are 
5% in analyses. 
 



                     
          (a) Geometry                                 (b) Finite element mesh with ED element 

 
Figure 4.1 Geometry and FE model of Koyna Dam 

 
Table 4.1 Parameters In The Constitutive 
Type of constitutive relation Parameters 
Tension  η = 2.0  ξ = 10 λ = 0.05 
Compression  N = 4 ξ = 100 λ = 0.2 
 
4.2. Loading conditions 
 
The normal static loads including the dam gravity, hydrostatic pressure of reservoir on the upstream 
face and hydrodynamic pressures. The dynamic loads include earthquakes in two directions and the 
horizontal and vertical records of the Koyna earthquake are shown in Fig.4.2. The peak ground 
accelerations are 0.40g in the horizontal direction and 0.26g in the vertical direction. The 
hydrodynamic pressures are modeled via the Westergaard added-mass assumption and modeled with 
element MASS 21 in ANSYS (as shown in Fig.4.1 (b)).  
 

      
 (a) Horizontal                                     (b) Vertical 

 
Figure 4.2 Koyna earthquake records of December 11, 1973 

 
4.3. Failure process of the dam 
 
During the dam subjected to acceleration time histories, four typical time points (2.62s, 4.28s, 4.78s 
and 4.98s) are chosen in the failure process of dam and the corresponding failure patterns with 
principal tensile stress (S1) are shown in Fig. 4.3.  
 
As can be seen in Fig. 4.3, when the dam is loaded during the first two or three seconds, although only 
several element are damaged and no visible crack occurs, the slope of downstream surface changes are 
characterized by the high tensile stress which leads to further damage. With the on-going acceleration 
excitation, at 4.28s, a crack appears and propagates from the downstream surface with high tensile 
stress. Then due to the rigorously shocking in the downstream direction, at 4.78s a crack appears in the 
upstream surface and propagates towards downstream. During the next seconds, these two cracks 
propagate quickly and finally meet indicating the dam fails, and then the other local and short cracks 
appear until the end of calculation. As a result, one main horizontal crack initiates and propagates 
through the dam at the level where slop changes abruptly which is consistent with those reported by 
other researchers (Lee, J. and Fenves 1998; Pekau, O. A. et al. 1995), while the some other local 



damage also occurred due to considering the effect of the concrete heterogeneity.  
 

 
  (a) 2.62s               (b) 4.28s                  (c) 4.78s               (d) 4.98s     

 
Figure 4.3 Failure process of dam with principal tensile stress (deformation scaled by 100) 

 
4.3. Effect of sizes of ED elements 
 

         

         
 

Figure 4.4 Effect of element sizes on failure patterns. (a) 0.1m. (b) 0.3m. (c) 0.5m. (d) 0.8m. (e) 1m. (f) 2m.  
 
The size of the ED element which is at the relatively meso-level with no specific definition can 
influence the simulation results and this influence is considered here. The meso-level is generally 
considered to be of the scale of 10-3 m for the study of the macroscopic mechanical response of 
concrete. Compared with the large-scale structures at 100 m level, the referred relatively meso-level is 
suitable to be of the scale of 10-2 m or10-1 m. Fig. 4.4 shows a set of failure patterns of the Koyna dam 
as examined above using six element sizes (widths): 0.1 m (91318 elements), 0.3 m (43238 elements), 
0.5 m (20006 elements), 0.8 m (10506 elements), 1.0 m (4238 elements), 2.0 m (1405 elements), with 



all other conditions being the same. It can be seen that the places which the main crack occurs for all 
results are basically accorded, although the widths of the crack are obvious difference due to the size 
of the elements. However, an increase in the size of elements leads to a more homogeneous character 
of the dam with local damage rarely occurring owing to the assumption of homogeneous for the ED 
element. The results for the smaller element size are much closer to each other and the short cracks 
may occur on the dam face. Therefore, the smaller the element size, the more heterogeneous the 
concrete will be. Meanwhile, the 0.5 m × 0.5 m elements or smaller sizes are acceptable for the 
numerical simulation of structures at 100 m level. In order to strike a balance between the need to 
model the concrete heterogeneity and computational efficiency, a refined mesh is used for the 
potential parts of stress concentration alternatively. 
 
 
5. CONCLUSIONS 
 
In order to make the feasibility and effectiveness of the mesoscale model for damage simulation of 
large-scale concrete structures subjected to earthquake excitation, the ED element method is developed 
and a systematic description of its implementation within the commercial FE software ANSYS 
through employing the user element interface UserElem is presented. The proposed ED elements 
which are used to discretize the concrete structures are assumed to be homogeneous at the meso-level 
while the influence of heterogeneity of concrete is approximated by randomly prescribing the material 
properties in each ED element. The user element interface UserElem which enables a successful 
integration of the ED element with the ANSYS platform after compiling and linking has been 
systematically developed. The damage and fracture behavior of the Koyna Gravity Dam was analyzed 
to demonstrate the reliability and flexibility of the ED element in the seismic analysis for larger-scale 
concrete structures. Comparisons with earthquake damage investigation and the work of other 
researchers verify the correctness of the method as well as the corresponding programming. Moreover, 
the simulation result is influenced by the size of the ED element, indicating that the relatively 
meso-scale (0.5 m × 0.5 m or smaller) are preferable for the simulation of larger-scale structures.  
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