
Modelling shear-flexure interaction in equivalent frame 
models of slender RC walls 
 
 
 
P. E. Mergos 
Technological Educational Institute of Chalkida, Greece 
 
K. Beyer  
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland  
 
 
 
 
 
SUMMARY: 
Experimental results for quasi-static cyclic tests on reinforced concrete (RC) walls have shown that shear 
deformations can constitute a significant ratio of the total deformations when the wall is loaded beyond the 
elastic regime. For walls, which form a stable flexural hinge at their base, the ratio of shear to flexural 
deformations remains approximately constant over the entire range of imposed displacement ductilities. This is 
contrary to the common modelling approach of treating the shear deformation as decoupled from the flexural 
deformations, which leads to constant shear deformations rather than a constant ratio of shear to flexural 
deformations once a flexural mechanism is formed and the shear force carried by the wall no longer increases. 
This paper proposes a simplified method of incorporating shear-flexure interaction effect in equivalent frame 
models of flexure dominated RC walls. In particular, appropriate modifications to the constitutive V-γ law for 
the wall base section are proposed as a function of the corresponding flexural response. The suggested 
methodology is implemented in a finite element model consisting of two interacting spread inelasticity sub-
elements representing inelastic flexural and shear response. The complete numerical model is incorporated in the 
general finite element code for damage analysis of RC structures IDARC and it is first validated against 
experimental results of single RC walls subjected to cyclic loading. In a second step, it is applied in inelastic 
static and dynamic analyses of a tall wall-frame system. It is shown that ignoring shear-flexure interaction may 
lead to unsafe predictions in particular regarding seismic demands at the critical ground storey level. 
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1. INTRODUCTION 
 
Slender capacity-designed RC walls form a stable flexural mechanism when subjected to horizontal 
loads. In most structural engineering analysis programs the shear stiffness of such walls is assigned a 
constant value that cannot be updated during the loading process. This modelling approach has been 
supported by the misconception that the shear deformations will remain constant once the nominal 
yield force, which is determined by the flexural mechanism, is reached. As a result the ratio of the 
modelled shear to flexural deformation decreases after the onset of flexural yielding. Experimental 
evidence, which goes back as far as the 1970s  has, however, shown that this does not apply to real RC 
walls even if the walls are capacity-designed. After flexural yielding the shear deformations continue 
to increase due to interaction of shear and flexural deformations in the wall’s plastic hinge region 
(Beyer et al. 2011). 
 
Several beam-column element models have been developed to capture shear-flexure interaction in RC 
members. The most sophisticated fibre elements (displacement or forced based) implement advanced 
analytical methodologies like the modified compression field theory (e.g. Petrangeli et al. 1998, Guner 
and Vecchio 2011). However, they necessitate the use of 2D or 3D constitutive material laws and 
require iterations at each fiber to obtain the section strain field. Hence, the computational effort 
involved may limit their applicability for response history analysis of complicated multi-storey 
structures. Other models apply appropriate modifications to phenomenological section V-γ 
constitutive laws (e.g. Marini and Spacone 2006, Mergos and Kappos 2012) as a function of the 



corresponding section flexural demands in terms of curvatures or axial strains. This approach 
combines both computational efficiency and accuracy.  
 
The analytical models of the latter category have placed emphasis so far on modeling response of RC 
members with structural deficiencies which fail in shear after yielding in flexure. Application of these 
models to flexure-controlled RC members has shown that the shear deformations of such members are 
typically underestimated (Mergos 2009). The objective of this study is therefore to suggest 
modifications to the base section constitutive V-γ laws of flexure-dominated RC structural walls in 
order to account for shear-flexure interaction of such members. The suggested modifications are 
applied to a beam-column element developed previously  for the seismic analysis of deficient RC 
structures (Mergos and Kappos 2009, 2012). The resultant numerical model is first calibrated against 
experimental data of single slender RC walls. Then, it is implemented in the inelastic analysis of a ten-
storey wall-frame RC structure. The necessity of incorporating shear-flexure interaction effect in 
seismic analysis of tall RC wall-frame systems is revealed. 
 
 
2. SIMPLE MODELS FOR SHEAR-FLEXURAL INTERACTION IN SLENDER RC WALLS 
 
Results from several series of quasi-static cyclic tests on slender capacity-designed RC walls with 
different cross sections suggest that the ratio of shear to flexural deformation remains approximately 
constant over the entire range of applied displacement ductilities. A summary of experimental 
evidence supporting this hypothesis is presented in Beyer et al. (2011). To illustrate this behaviour, 
Fig. 2.1 shows the ratios of shear to flexural deformations as a function of the top drift for several 
cantilever RC walls tested under quasi-static cyclic loading.  
 

 
 

Figure 2.1. Variation of s/f ratios with top drift for cantilever RC walls tested under quasi-static cyclic loading 
(Beyer et al., 2011). 

 
A mechanic’s based explanation of this experimental behaviour is provided in Beyer et al. (2011). In 
this study, by using Mohr’s circle and observing that for flexure-dominated RC walls the contributions 
of horizontal strain in the shear reinforcement and the strain in the compression diagonal to the shear 
flexibility after flexural yielding may be treated as negligible, Eqn. (2.1) is derived for determining the 
shear strain γ at the wall base section. In this equation, γflis the shear strain due to interaction with 
flexure, m is the mean axial strain of the wall section, Lw is the length of the wall section, c is the 
depth of the compression zone, φthe curvature and β a cracking angle representative of the fanned 
crack pattern (Beyer et al. 2011). 
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By applying this equation and assuming that the shear and flexural deformations outside the plastic 
hinge region are negligible, Eqn. (2.2) is derived for determining the ratio of shear-to-flexural 
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displacements Δs/Δf after flexural yielding. In this equation, Hn is the wall shear span and Lph the 
plastic hinge length. Given that c remains approximately constant once the section has yielded, Eqn. 
(2.2) supports experimental evidence indicating that the ratio Δs/Δf also remains approximately 
constant over the entire range of applied displacement ductilities (Beyer et al. 2011). 
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3. BEAM-COLUMN ELEMENT WITH SHEAR-FLEXURE INTERACTION 
 
A beam-column element originally developed for RC column members with sub-standard detailing 
(Mergos and Kappos 2009, 2012) is applied herein to model shear-flexure interaction in slender RC 
walls. Finite element components are discussed in the following. Emphasis is placed on the analytical 
procedures developed to account for shear-flexure interaction in accordance with the observations of 
the previous section of this study. 
 
3.1. General Formulation 
 
The finite element adopted herein is based on the flexibility approach (force-based element) and 
belongs to the class of phenomenological models. It consists of two sub-elements representing flexural 
and shear response (Fig. 1). The two sub-elements are connected in series. Hence, the total flexibility 
matrix [Fb], relating incremental moments ΔΜΑ, ΔΜΒ and rotations ΔθΑ, ΔθΒ at the element flexible 
ends A and B respectively, is derived by the sum of the flexibility matrices of the flexural [Ffl] and the 
shear [Fsh] sub-element.  

 

 
 

Figure 3.1. Beam-column element with shear-flexure interaction: (a) RC wall; (b) finite element; (c) moment 
diagram; (d) shear diagram; (e) flexural sub-element; (f) shear sub-element 

 
The flexural sub-element (Fig. 3.1e) is used for modelling flexural behaviour of an RC member before 
and after yielding of the longitudinal reinforcement. It consists of a set of rules governing the 
hysteretic moment-curvature (M-φ) response of the member end sections and a spread inelasticity 
model describing flexural stiffness distribution along the entire member. 
 
The M-φ hysteretic model is composed by the skeleton curve and a set of rules determining response 
during loading, unloading and reloading. M-φ envelope curve is derived by section analysis and 
appropriate bilinearization. The Sivaselvan and Reinhorn (1999) hysteretic model, properly modified 
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to be compatible with a bilinear envelope curve, is adopted to represent M-φ response under cyclic 
loading. Hysteretic model cyclic degradation parameters are chosen to yield maximum correlation 
with the respective experimental recordings of five slender RC structural walls tested by Dazio et al. 
(2009). The obtained values are 4.0 for the unloading stiffness degrading parameter and 0.75 for the 
slip or crack-closing parameter (Reinhorn et al. 2009). 
 
To capture distribution of section flexural stiffness along the concrete member, a spread inelasticity 
model is assigned (Soleimani et al. 1979). Following this model, the element is divided into two 
inelastic end regions and one elastic intermediate zone. Stiffness along the intermediate zone is 
assumed to be uniform and equal to the elastic stiffness EIo of the M-φ envelope curve. Flexural 
stiffness in the inelastic end-zones is defined by the flexural rigidities EIA and EIB, which are 
determined from the M-φ hysteretic relationship of the corresponding end sections (Fig. 3.1e). 
 
In the same figure, αA and αB are the yield penetration coefficients. The yield penetration coefficients 
specify the lengths of the member inelastic zones. In the original formulation of the element (Mergos 
and Kappos 2009, 2012), these coefficients are determined from the current moment diagram as the 
part of the element, where acting moment exceeds end section yielding moments MyA and MyB. This 
formulation represents in a more accurate manner the gradual spread of inelastic deformations from 
the member ends and it does not require knowledge of moment distribution. However, for cases, 
where moment distribution is stable and can be predicted with reasonable accuracy, empirical constant 
values can also be assigned to αA and αB like the ones proposed by Priestley et al. (2007) for the 
equivalent plastic hinge length of RC walls. Having established stiffness distribution along the RC 
member, the coefficients of the flexibility matrix of the flexural sub-element can be derived by closed 
form equations determined by the principle of virtual work (Mergos and Kappos 2009, 2012). 
 
In a similar sense, the shear sub-element (Fig. 3.1f) represents the hysteretic shear behaviour of the RC 
member prior and subsequent to shear cracking and flexural yielding. It consists of a set of rules 
determining V-γ (shear force vs. shear strain) hysteretic behaviour of the member intermediate and end 
regions, and a shear spread inelasticity model determining distribution of shear stiffness along the R/C 
member. Shear hysteresis is determined by the V-γ skeleton curve and a set of rules describing 
response during unloading and reloading.  
 
In particular, the shear sub-element is divided in two end-zones, where shear-flexure interaction takes 
place and an intermediate region where interaction with flexure may be disregarded. The lengths of the 
inelastic end-zones αA and αB of the shear sub-element are determined by the respective ones of the 
flexural sub-element. This formulation assures that shear-flexure interaction effect in slender RC walls 
is concentrated in the location of the plastic hinges as observed in several experimental studies (Beyer 
et al. 2011).  
 
Shear stiffness GAM of the intermediate part of the sub-element is assumed to be uniform and it is 
determined by the initial V-γ primary curve, without considering shear-flexure interaction effect. The 
V-γ initial primary curve consists of three branches (Fig. 3.2), but only two different slopes. This 
approach is adopted in order to distinguish hysteretic shear behaviour before and after flexural 
yielding as explained in the next section of this study. 
 
The first branch, with uncracked shear stiffness GAo, connects the origin and the shear cracking point 
(γcr,Vcr), which is defined as the point where the nominal principal tensile stress exceeds the mean 
tensile strength of concrete (Dazio et al. 2009). The second and third branches of the initial primary 
curve have the same cracked shear stiffness GA1 and are separated at the point corresponding to 
flexural yielding (γy,Vy). Shear force corresponding to flexural yielding Vy is determined by 
equilibrium. Shear strain γy is calculated for simplicity by assuming at flexural yielding the same ratio 
of shear-to-flexural displacements with the one adopted for the whole range of inelastic response.  
 
The stiffness of the inelastic end-zones GAA and GAB are defined by the modified V-γ envelope curve 
(Fig. 3.2), which considers shear-flexure interaction effect as a function of the current maximum 



curvature demand of the respective end sections of the flexural sub-element. The methodology for 
deriving backbone shear stiffness GA2 after flexural yielding is described in the next section. 
 
To determine shear stiffness at the unloading and reloading stages of response, the hysteretic model of 
Sivaselvan and Reinhorn (1999) is also adopted herein. However, since shear hysteretic response is 
characterized by significant pinching and stiffness deterioration, more severe cyclic degradation 
parameters are applied compared to flexural response. As for flexural hysteretic response, the shear 
cyclic degradation parameters are chosen to yield best correlation with the respective experimental 
recordings of five slender RC structural walls tested by Dazio et al. (2009). The derived values are 1.0 
for the unloading stiffness degrading parameter and 0.30 for the slip or crack-closing parameter 
(Reinhorn et al. 2009). 
 
Having established stiffness distribution along the RC member, the coefficients of the flexibility 
matrix of the shear sub-element are derived by closed form equations determined by the principle of 
virtual work (Mergos and Kappos 2009, 2012). 

 

 
 

Figure 3.2. End-section envelope curves: (a) M-φ; (b) V-γ 
 
3.2. Determination of tangent envelope shear stiffness in the plastic hinge regions 
 
3.2.1. Walls under general loading conditions 
In general, total shear flexibility in the plastic hinge regions after flexural yielding may be considered 
as the sum of the shear flexibility prior to flexural yielding and the additional shear flexibility induced 
by shear-flexure interaction effect. Hence, if Δγ is the total shear strain increment after flexural 
yielding, Δγsh is the shear strain increment due to shear flexibility prior to flexural yielding and Δγfl is 
the shear strain increment developed by interaction with flexure, then 
 

sh fl        (3.1) 

 
Shear flexibility prior to flexural yielding is equal to 1/GA1 (see Fig. 3.2). If ΔV is the applied shear 
force increment, then Eqn. (3.2) can be used to determine the shear stiffness GA2 after yielding in 
flexure. 
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Shear strain increment developed by interaction with flexure Δγfl can be calculated by Eqn. (3.3) as 
described in the previous section of this study. This equation implies a linear variation of γfl with φ, if c 
is assumed constant after flexural yielding. This assumption is typically adequate. However, variation 
of c can easily be taken into account by the proposed analytical procedure (see Fig. 3.3). 
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Equations (3.2) and (3.3) provide current tangent shear stiffness GA2 as a function of GA1, ΔV and Δφ. 
Hence, GA2 can be considered as independent of the wall loading conditions since it is based on local 
responses. No assumptions regarding moment distribution are required. However, GA2 also affects ΔV 
and Δφ since it influences the flexibility matrix of the element. Hence, an iterative analytical scheme 
should be assigned, which terminates when GA2 converges with a pre-specified tolerance.  
 

 
 

Figure 3.3. Variation of γ,fl with curvature demand 
 

Furthermore, for the vast majority of flexure dominated RC walls developing inelastic response, the 
shear flexibility prior to flexural yielding 1/GA1 may be disregarded since it represents a negligible 
fraction of the total shear response (Beyer et al. 2011). By applying this simplification and substituting 
Eqn. (3.3) in Eqn. (3.2), the following equation can be used for determining GA2. 
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3.2.2. Cantilever walls  
In this section, it is shown how for the special case of cantilever walls, Eqn. (3.4) can be further 
simplified. For cantilever walls, the shear force increment ΔV can be written as ΔΜ/Hn. Hence, Eqn. 
(3.4) becomes 
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After flexural yielding, the ratio ΔΜ/Δφ represents the post-yielding M-φ envelope flexural tangent 
stiffness EI1 (see Fig. 3.2). By this substitution, Eqn. (3.6) is derived. 
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Eqn. (3.6) is important because it shows that for slender cantilever RC walls a constant tangent 
envelope shear stiffness value GA2<GA1 may be assigned in the plastic hinge regions after flexural 
yielding when modeling shear-flexure interaction. This holds under the general assumption that the 
neutral axis depth remains constant after yielding in flexure. Otherwise, an average value for c could 
be applied with reasonable accuracy.  
 
It is important to remember that Eqn. (3.6) should be applied only in the particular cases, where the 
point of contra-flexure is known and remains constant throughout structural response. Otherwise, it 
may yield significant errors in the prediction of inelastic shear deformations. Equation (3.6) may also 
be rewritten as a function of the shear-to-flexural displacements Δs/Δf ratio, which has been shown 
(Beyer et al. 2011) to be approximately independent of the imposed ductility demand. By proper 
substitution of Eqn. (2.2) in Eqn. (3.6), the following equation is derived: 
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4. VALIDATION AGAINST EXPERIMENTAL RESULTS OF A CANTILEVER RC WALL 
 
The proposed numerical model is fully implemented in the general finite element code IDARC2D 
developed at the State University of New York at Buffalo (Reinhorn et al. 2009). In this section, it is 
validated against the experimental results of a single RC wall specimen subjected to quasi-static cyclic 
loading. 

 
 
 

 

 

 

 

 
 

Figure 4.1. RC structural wall WSH3 by Dazio et al. (2009): (a) structural configuration; (b) shear force vs. total 
displacement; (c) shear force vs. shear displacement; (d) variation of shear-to-flexural displacement ratio with 

imposed top displacement demand 
 

Dazio et al. (2009) performed quasi-static cyclic tests on six RC walls at the ETH Zurich. The main 
scope was to investigate the effect of different vertical reinforcement contents and different 
reinforcement ductility properties, typical for Central Europe, on the deformation behaviour of slender 
RC walls. Herein, the RC wall specimen WSH3 (Fig. 4.1a) is examined. The test unit was 2.00m long 
and 0.15m wide. The length of the shear span was 4.56m. During cyclic loading, the specimen was 
subjected to a constant compressive axial load equal to 686kN. Details on reinforcement configuration 
and material properties can be found in Dazio et al. (2009). 
 
For the analysis of the specific specimen, a single finite element is applied. The length of the inelastic 
end-zones is assumed constant and equal to the plastic hinge length proposed for RC walls by Priestley 
et al. (2007). In this manner, anchorage slip effect is, indirectly, taken also into consideration. Both 
Eqn. (3.4) and (3.6) were applied for the determination of GA2. These equations were found to yield 
identical results. Angle β is estimated by the equation proposed by Collins and Mitchell (1997). 
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Figure 4.1b presents lateral load vs. lateral displacement response as derived by the proposed model 
and as recorded experimentally. It can be seen that the analytical model reproduces with sufficient 
accuracy the experimental initial stiffness, lateral load capacity, unloading and reloading stiffness.  
 
Furthermore, Fig. 4.1c presents a comparison of the predicted and the recorded lateral top 
displacement developed by shear deformations. In this figure, it is clear that experimental shear 
displacements increase considerably after flexural yielding and they contribute a considerable part of 
the total response. Adequate prediction of the magnitude of inelastic shear displacements is achieved 
by the shear-flexure interaction analytical procedures described in this study. It is worth noting that 
shear hysteresis is characterized by significant pinching and unloading stiffness deterioration. These 
phenomena are well captured by the proposed model. The above show that the finite element follows 
closely not only total, but also individual component displacement response. 
 
Figure 4.1d illustrates the variation of the shear-to-flexure displacement ratio with the imposed top 
displacement demand. It can be inferred that the experimental ratio remains approximately constant 
throughout the loading history. This is well represented by the analytical model proposed in this study. 
On the other hand, if interaction with flexure is neglected, then the same ratio is grossly 
underestimated as the level of inelasticity increases. It is worth noting that, even when modeling shear-
flexure interaction, Δs/Δf does remain exactly constant as inelasticity progresses. This is due to the 
influence of the flexural and shear deformations outside the plastic hinge region. However, it is clear 
that this deviation is insignificant and may be disregarded in the analytical procedure. 

 
 

5. ANALYSIS OF A WALL-FRAME STRUCTURE 
 

Shear-flexure interaction effect is examined in a ten-storey wall-frame structure designed according to 
a previous version of EC8 for ductility class ‘M’. Concrete and steel classes are C20/25 and S400 
respectively. Soil category is ‘A’. Frame geometry is presented in Fig. 5.1a. Analytical design of the 
specific frame is described in Penelis and Kappos (1997). 
 
Three different finite element models are applied for the seismic analysis of this frame. Model 1 
includes only flexural deformations. Model 2 accounts for flexural and shear deformations without 
considering their interaction. Finally, Model 3 takes into consideration the interaction of shear and 
flexural flexibilities. Since wall moment distribution varies throughout structural response, Eqn. (3.2) 
is applied for GA2 determination accompanied by the necessary iterative scheme. Furthermore, the 
length of the inelastic zone at the base of the wall is defined by the current moment diagram following 
the gradual spread plasticity approach (see Fig. 3.1) as described in Mergos and Kappos (2012). The 
main scope of this section is to investigate if and how slender wall shear-flexure interaction modifies 
the distribution of damage for tall wall-frame structures. 

 
Figures 5.1 and 5.2 present the main results of pushover analysis until onset of lateral failure, which is 
assumed herein to coincide with onset of flexural failure at the base of the RC wall. Figure 5.1b shows 
that shear-flexure interaction has only a negligible effect on the global lateral stiffness of the wall-
frame structure. However, shear flexure interaction increases by approximately 10% the top 
displacement capacity of the wall-frame system. 
 
Figure 5.1c reveals an important resultant of shear-flexure interaction in the plastic hinge region of the 
slender RC walls. In this figure, distribution of normalized interstorey drifts at a top displacement 
corresponding to an average drift of 2% is presented. The figure shows that the normalized drift of the 
base storey increases by approximately 30%, when interaction is taken into account. This is due to the 
increase of inelastic shear deformations in the plastic hinge region when shear-flexure interaction is 
taken into account. Unlike flexural displacements, which increase gradually over the height, inelastic 
shear displacements are concentrated in the locations of the plastic hinge regions. 



 

 

 

 

 

Figure 5.1. (a) Geometry of the wall-frame structure; (b) pushover base shear over weight vs. top displacement 
over total height; (c) maximum normalized interstorey drifts from pushover analysis at 2% top displacement 

  

 

 
Figure 5.2. Pushover analysis maximum curvature ductility demands at a top displacement corresponding to an 

average drift of 2%: (a) beams; (b) columns 
 

 
Figure 5.3. Time history analysis results: (a) 1st storey displacement response; (b) maximum column curvature 

ductility demands 
 
Figure 5.2a illustrates the distribution of maximum developed beam curvature ductility demands at a 
top displacement corresponding to an average drift of 2%. The results show that shear-flexure 
interaction has a insignificant influence on beam damage distribution. Last, Fig. 5.2b presents 
distribution of column maximum curvature ductility demands for the same top displacement. Shear-
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flexure interaction leads to a significant increase in the inelastic deformation demand of the base 
column. This increase is related to the larger interstorey drift at the base and may adversely affect the 
integrity of the frame when not accounted for in design.  
 
Finally, Fig. 5.3 illustrates the basic time history analysis results of this frame for the El-Centro 1940 
N-S ground motion record. A higher PGA value of 0.5g is applied in order to obtain significant 
damage for the frame under investigation. In general, the same conclusions can be drawn with 
pushover analysis. Fig. 5.3a presents the 1st storey time history responses. It is evident that shear-
flexure interaction leads to an important increase in the peak and residual storey displacements. The 
concentration of inelastic deformations at the base level leads to the significant increase of the base 
column curvature ductilitydemands (Fig. 5.3b). In particular, the column curvature demand rises from 
1.1 to 5.4, when modeling properly inelastic shear wall response.  
 
 
6. CONCLUSIONS 
 
A simplified methodology is presented for incorporating shear-flexure interaction of slender walls in 
seismic analysis of RC structures. Building on mechanics and experimental evidence, appropriate 
modifications are proposed to the phenomenological wall base section constitutive V-γ law. The 
modifications are implemented in a distributed inelasticity beam-column element incorporated in a 
general finite element framework. The numerical outcome is first validated against experimental 
recordings of a single slender RC wall. It is then employed in the seismic analysis of a tall wall-frame 
structure. Comparing pushover and time-history analysis results of models which neglect or consider 
shear-flexure interaction, underlines the importance of including shear-flexure interaction for slender 
RC walls when analysing wall-frame structures. 
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