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SUMMARY 

The use of field monitoring data for seismic risk evaluation plays an important role in reducing the aleatory 

uncertainties, through the reconcilement between numerical and testing results or the updating of fragility 

functions using data available after seismic events. 

Different methodologies to update FE models based on usually incomplete pre-event vibration monitoring data 

can be employed by minimizing a function given by the residuals between experimental and numerical 

quantities. The updating process should follow specific criteria, including eventual Bayesian fundamentals, so as 

to assure that the engineering judgment used in modeling is well kept. Furthermore, such philosophy can be 

extended to post-event fragility updating, based on adequate engineering demand parameters taken from 

nonlinear dynamic analysis of the building.  

The influence of different structural parameters to be estimated on the effectiveness of the updating methodology 

is explored and conclusions are drawn towards the optimization of the procedure for future fragility assessment 

application. 
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1. INTRODUCTION 

In the last decade, several earthquakes produced severe damage and casualties around the world and in 

the European-Mediterranean region. Recent events like L’Aquila (Italy), 2009, Athens (Greece), 1999 

and Izmit (Turkey), 1999, remind us that the vulnerability and exposure of our built environment are 

high and the seismic risk cannot be underestimated. Therefore higher protection measures should be 

taken to increase the resilience of our society and minimize the effects of seismic events. 

One of the crucial steps for the mitigation of the seismic risk is indeed the capacity of assessing the 

risk and its correlated uncertainties. A unified methodology and tools for the Earthquake Engineering 

Community should be developed for seismic vulnerability assessment, accounting for different 

typologies of building and building aggregates. Within this methodology, field monitoring data will 

help to reduce the epistemic as well as aleatory uncertainties associated with the risk assessment 

procedure, allowing the creation of real time assessment tools. 

The uncertainty behind any attempt to represent reality by a mathematical model is mainly caused by 

lack of knowledge and may exist in all aspects of the modeling procedure. Physical structural features, 

i.e. material, mass and geometry, are likely to be selected as updating parameters in order to improve 

accuracy. This process will quantify the difference between experimental and numerical results and it 

will subsequently modify the numerical values of the input parameters to increase the correlation 

between the observed dynamic response of the structure and the prediction from the numerical model. 

In this paper, a methodology is presented for the numerical model updating of buildings using field 

monitoring data. The aim of the procedure is to find the best suitable model within a class of simulated 

numerical models, based on incomplete modal data, as well as the most probable value of the system 

natural frequencies and the full system mode shapes. A Montecarlo simulation of the structural 

parameters involved in the updating process is initially performed. Mean and standard deviation of the 

Young’s Modulus, percentage of variability of the nodal masses and type of distribution of the 



aforementioned sensitivity parameters among the structural members are needed in order to define the 

simulation of the numerical models. Changes in geometry, boundary conditions and other structural 

characteristics are not considered in this specific study. 

The level of accuracy between measured and numerical mode shapes is estimated through the 

definition of a Generalized Modal Error (GME) (e.g. Alvin, 1997), which involves both frequencies 

and modal displacements. Finally, an elastic time-history analysis is performed so as to assure that the 

difference in the response between initial and updated model remained within a certain level. The 

proposed methodology is illustrated by updating RC frame structures with both simulated and 

observed modal data.  

The tools that have been used for developing the aforementioned routine are Matlab, for the numerical 

simulations and the post-processing calculations, and OpenSees, for the structural analyses. 

2. DESCRIPTION OF THE UPDATING PROCESS 

The updating procedure has been schematically divided into three parts: generation of the numerical 

models, eigenvalue analysis and time-history analysis. 

 

In the initial part, different simulations can be selected for the two available sensitivity parameters. 

Each of them considers a proper distribution of Young’s Modulus and mass among the elements, 

according to which the Montecarlo simulation will generate the population of numerical models. 

Concerning the Young’s Modulus simulations, four possible scenarios have been defined: the first 

(Figure 1) considers a single value for the overall structure; the second (Figure 2) considers one value 

for beams and one value for columns for the whole structure; the third (Figure 3) considers a different 

value for beams and columns storey-by-storey (the elastic modulus is the same for all the beams of a 

specific storey and it changes at each floor, same for columns) and the fourth (Figure 4) considers a 

different value for all the structural members, regardless of the fact that they belong to a certain level 

and they are beams or columns. Finally, concerning the mass simulations, the considered options were 

to consider a different percentage of variability for the nodal values storey-by-storey or to consider a 

different percentage of variability for the nodal values considering each single node. Mass can also be 

excluded from the simulation process, being considered in this way as a deterministic parameter. 

 

 

Figure 1. Young’s 

Modulus Sim. type 1 

 

Figure 2. Young’s 

Modulus Sim. type 2 

 

Figure 3. Young’s 

Modulus Sim. type 3 

 

Figure 4. Young’s 

Modulus Sim. type 4 

 

The definition of a mean value for the characteristic compressive (cylinder) strength of concrete fck and 

its standard deviation is fundamental for a satisfactory matching between numerical and observed 

results. The aforementioned quantities are taken into account in the generation of fck values, according 

to a normal distribution, considering the type of Young’s Modulus distribution and the number of 

samples which have to be generated by the algorithm. 

 

The second part of the routine performs the modal analysis for all the numerical models which were 

previously simulated. Only one among them is judged as superior comparing to the initial model 

considered at the beginning of the updating procedure. The evaluation of a Generalized Modal Error 

(GME) which combines the MAC (Modal Assurance Criterion) (e.g. Alvin, 1997) index, allows the 

comparison between numerical responses and field monitoring data. The following formulas are used: 
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where: 

 

GME Generalized Modal Error; 

ωj eigenfrequency j from numerical model; 

ωEi eigenfrequency i from field monitoring test; 

MAC modal assurance criterion; 

Φj  eigenvector j from numerical model; 

ΦEi  eigenvector i from field monitoring test; 

M mass matrix; 

 

Finally, in the third and last part of the updating routine, nonlinear dynamic analyses of initial and 

updated model are performed, which the purpose is to compare the elastic responses of both initial and 

updated model in term of displacements, to ensure that the difference of the absolute values for each of 

the translational DOFs doesn’t exceed reasonable limits and the two responses remain comparable. 

3. PRELIMINARY ANALYSES USING SIMULATED FIELD MONITORING DATA 

Two preliminary tests, using structures of different degrees of geometry irregularity, were initially 

performed in order to calibrate the proposed methodology. The structural models, showed in Figure 5 

and Figure 6, represent RC frame structures with a simple geometry and a regular distribution of 

stiffness and mass. Structure type 1 presents bay length of 10 m and 6 m for longitudinal and 

transversal direction respectively, interstory height of 4 m and 3 m for first and second floor 

respectively, beam section of 0.20 m by 0.20 m and column section of 0.30 m and 0.30 m. Instead, 

structure type 2 presents variable bay lengths (6 m and 4 m spans) for longitudinal and transversal 

direction, interstory height of 4 m for the first floor and 3 m for the upper floors and same section of 

0.30 m by 0.30 m for beams and columns. 

Observed field monitoring data were numerically simulated by arbitrarily changing the Young’s 

Modulus among the structural members. No change of mass and boundary conditions are considered 

to simulate the field monitoring response. A notable change in the modal response was obtained, 

although the deformed shape for all the considered modes remained qualitatively unchanged. A 

comparison between the initial model (Young’s Modulus equal to 30000 MPa for all the members) 

and the model used to obtain the observed results from field monitoring is presented in Table 1 and 

Table 2. 

 

 

Figure 5. Test Structure 1 

 

Figure 6. Test Structure 2



Table 1. Test structure 1 – Comparison between 

initial numerical (ωi) and field monitoring data (ωE) 

Mode ωi [rad/sec] ωE [rad/sec] Δω [%] 

1 16.95 16.64 1.82% 

2 19.03 18.74 1.53% 

3 20.15 19.87 1.40% 

4 24.14 23.93 0.87% 

5 61.54 60.87 1.08% 

6 73.36 72.76 0.83% 

7 79.85 78.00 2.31% 

8 80.25 79.92 0.41% 

9 82.50 80.83 2.02% 

10 83.25 81.19 2.47% 

Table 2. Test structure 2 – Comparison between 

initial numerical (ωi) and field monitoring data (ωE) 

Mode ωi [rad/sec] ωE [rad/sec] Δω [%] 

1 21.00 21.28 1.29% 

2 21.96 22.24 1.25% 

3 22.47 22.89 1.83% 

4 30.89 31.18 0.93% 

5 39.26 39.78 1.30% 

6 45.94 46.52 1.25% 

7 55.61 56.35 1.31% 

8 59.96 60.58 1.03% 

9 69.40 70.47 1.52% 

10 71.51 72.41 1.24% 

 

The possibility of accounting for complete measured data, i.e. considering 20 modes with 6 DOFs 

recorded per node, and incomplete measured data, i.e. considering 3 modes with 3 DOFs recorded per 

node, was investigated in these preliminary analyses. However, the type of instrumentation and the 

number of available instruments plays a very important role in an exhaustive and complete monitoring 

of the structural system. The possibility of recording only the translational DOFs, together with a 

limited number of instruments, not able to cover all the entire structure, leads to necessary 

simplifications (mode shape expansion) when analyzing the response and obtaining the modal 

displacements for all the structural nodes. 

3.1. Calibration of the mechanical characteristic simulation 

In order to obtain an adequate matching between numerical and experimental response, Montecarlo 

simulation has been calibrated by considering different values for mean and standard deviation of the 

concrete characteristic compressive strength. For the evaluation of the Young’s Modulus, starting from 

the mean value of the concrete characteristic compressive strength fck, the formulas of the Italian Code 

(NTC-2008) (Decreto Ministeriale 2008) were implemented in the routine: 
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with: 

 

fck  concrete characteristic compressive cylinder strength [MPa]; 

fcm mean value for the characteristic compressive cylinder strength [MPa]; 

Ecm Young’s Modulus [MPa]; 

 
Table 3. Type, mean and standard 

deviation for concrete strength  

Concrete μfck [MPa] σfck [MPa] 

C28/35 28 8 

C25/30 25 5 

C20/25 22 5 

C20/25 19 5 

C16/20 16 5 

Table 4. Upper values for the 

Young’s Modulus simulations  

fck + σfck fcm [MPa] Ecm [MPa] 

36 44 34313 

30 38 32837 

27 35 32036 

24 32 31187 

21 29 30279 

Table 5. Lower values for the 

Young’s Modulus simulations 

fck - σfck fcm [MPa] Ecm [MPa] 

20 28 29962 

20 28 29962 

17 25 28960 

14 22 27871 

11 19 26672 

 

 



3.2. Preliminary analysis using complete measured data 

3.2.1. Test Structure 1 

Several tests using complete simulated experimental data were performed for test structure 1 (Figure 

5). For all those preliminary analyses, the Young’s Modulus is considered as the only sensitivity 

parameter involved in the simulations. Distribution type 1 (Figure 1), for the aforementioned quantity, 

is selected. A set of six tests have been carried out by considering different mean values for the 

concrete compressive strength and by considering a standard deviation of 5 MPa and 8 MPa. Below, in 

Table 6, the list of the entire set of tests with mean and standard deviation for the sensitivity 

parameter, best fit model and associated Generalized Modal Error (GME) are indicated. Considering, 

from Table 6, the set of simulations with best performance, Figure 7 shows all the GME evaluated 

from the entire numerical population in which a total of 10000 models were generated. 

 

 

 

 

 
Table 6. Set of test for Test Structure 1 with 

complete measured data 

Test Samples 
μfck 

[MPa] 

σfck 

[MPa] 

Best Fit 

Model 
GME 

1.1 10000 28 8 3203 0.06065 

1.3 10000 25 5 3203 0.00335 

1.4 10000 22 5 5448 0.00480 

1.5 10000 19 5 5081 0.00214 

1.6 10000 16 5 1332 0.00172 

  

Figure 7. GME from the population of models for Test 

1.6 - Test Structure 1 

 

A first a comparison between experimental and numerical deformed shape is provided in Figure 8, 

Figure 9 and Figure 10. A good matching between numerical and observed response could be found.  

 

 

Figure 8. Exp. (red) and num. 

(blue) comparison - Mode 1

 

Figure 9. Exp. (red) and num. 

(blue) comparison - Mode 2

 

Figure 10. Exp. (red) and num. 

(blue) comparison - Mode 3

Regarding the comparison between experimental and numerical eigenfrequencies (Table 7), the results 

from the updated numerical model exhibited an improvement towards the field monitoring response 

with respect to the initial numerical model. In Table 8, the model from which the simulated 

experimental response was obtained by arbitrarily changing the Young’s Modulus of the elements, is 

compared with initial and updated model. It can be noticed that, for several elements, updated and 

experimental Young’s Modulus are comparable. 
 



Table 7. Test Structure 1 - Comparison between initial 

(ωI) and updated numerical (ωU) response with 

complete field monitoring observations (ωE) 

Mode 
ωEi 

[rad/s] 

ωIi 

[rad/s] 

ωEi/ 

ωIi 

ωUi 

[rad/s] 

ωEi/ 

ωUi 

1 16.64 16.95 0.982 16.64 1.000 

2 18.74 19.03 0.985 18.81 0.996 

3 19.87 20.15 0.986 19.88 0.999 
4 23.93 24.14 0.991 23.91 1.001 

5 60.87 61.54 0.989 60.83 1.001 
6 72.76 73.36 0.992 72.73 1.000 

7 78.00 79.85 0.977 77.76 1.003 
8 79.92 80.25 0.996 79.88 1.001 

9 80.83 82.50 0.980 80.57 1.003 

10 81.19 83.25 0.975 80.98 1.003 

Table 8. Test Structure 1 - Comparison between initial 

(EI) and updated numerical (EU) response with 

complete field monitoring observations (EE) 

Elem. 
EEj 

[kPa] 
EIj [kPa] 

EEj/ 

EIj 
EUj [kPa] 

EEj/ 

EIj 

1 2.8e+07 3.0e+07 0.933 27643000 1.013 

2 3.1e+07 3.0e+07 1.033 27368000 1.133 

3 2.7e+07 3.0e+07 0.900 28543000 0.946 
4 3.2e+07 3.0e+07 1.067 26131000 1.225 

5 2.7e+07 3.0e+07 0.900 28338000 0.953 
6 2.7e+07 3.0e+07 0.900 29639000 0.911 

7 3.0e+07 3.0e+07 1.000 29303000 1.024 
8 2.6e+07 3.0e+07 0.867 29214000 0.890 

9 3.0e+07 3.0e+07 1.000 31028000 0.967 

10 3.0e+07 3.0e+07 1.000 30260000 0.991 
11 2.9e+07 3.0e+07 0.967 30770000 0.942 

12 2.9e+07 3.0e+07 0.967 29429000 0.985 
13 3.0e+07 3.0e+07 1.000 30558000 0.982 

14 3.0e+07 3.0e+07 1.000 30335000 0.989 

15 3.1e+07 3.0e+07 1.033 29710000 1.043 
16 3.0e+07 3.0e+07 1.000 29469000 1.018 

 

3.2.1. Test Structure 2  

In line with the test structure 1, distribution type 1 (Figure 1) of the Young’s Modulus is selected for 

carrying out the updating procedure using complete simulated experimental data on test structure 2 

(Figure 6). A set of six tests have been performed by considering different mean and standard 

deviation values for the concrete compressive strength. In Table 9, the list of the entire set of tests with 

mean and standard deviation values for the sensitivity parameter, best fit model and associated 

Generalized Modal Error (GME) are indicated. Again, considering from Table 9 the set of simulation 

which performed best, Table 10 shows the improvements of the updated model in matching the 

experimental response. 

 
 

Table 9. Set of test for Test Structure 1 with 

complete measured data 

Test Samples 
μfck 

[MPa] 

σfck 

[MPa] 

Best Fit 

Model 
GME 

2.1 2000 25 5 247 0.23995 

2.2 2000 22 5 247 0.04642 

2.3 2000 19 5 165 0.00171 

2.4 2000 16 5 1332 0.02016 

2.5 2000 19 8 543 0.00220 

2.6 2000 19 6 1822 0.00184 

Table 10. Test Structure 2 - Comparison between 

initial (ωI)  and updated numerical (ωU) response with 

complete field monitoring observations (ωE) 

Mode 
ωEi 

[rad/s] 

ωIi 

[rad/s] 
ωEi/ ωIi 

ωUi 

[rad/s] 

ωEi/ 

ωUi 

1 21.00 21.28 0.987 20.96 1.002 

2 21.96 22.24 0.987 21.93 1.001 

3 22.47 22.89 0.982 22.55 0.996 

4 30.89 31.18 0.991 30.73 1.005 

5 39.26 39.78 0.987 39.21 1.001 

6 45.94 46.52 0.987 46.07 0.997 

7 55.61 56.35 0.987 55.61 1.000 

8 59.96 60.58 0.990 59.91 1.001 

9 69.40 70.47 0.985 69.34 1.001 

10 71.51 72.41 0.988 71.66 0.998 

 

3.3. Preliminary analysis using incomplete measured data 

Taking into account the specifications and the results from the FEM updating procedures previously 

performed, a verification of the methodology has been done by considering incomplete simulated 

measured data (3 experimental mode shapes and 3 nodal DOF). The results indicate a slightly 

improvement in the matching between experimental and numerical modal response. 

 

 



Table 11. Set of test for Test Structure 2 with 

incomplete measured data 

Test Samples 
μfck 

[MPa] 

σfck 

[MPa] 

Best Fit 

Model 
GME 

1.6 10000 16 5 2133 1.40e-06 

 

Table 12. Set of test for Test Structure 2 with 

incomplete measured data 

Test Samples 
μfck 

[MPa] 

σfck 

[MPa] 

Best Fit 

Model 
GME 

2.3 2000 19 5 615 6.37e-06 

Table 13. Test Structure 1 - Comparison between 

initial (ωI) and updated numerical (ωU) response with 

incomplete field monitoring observations (ωE) 

Mode 
ωEi 

[rad/s] 

ωIi 

[rad/s] 
ωEi/ ωIi 

ωUi 

[rad/s] 
ωEi/ ωUi 

1 16.64 16.95 0.982 16.64 1.000 

2 18.74 19.03 0.985 18.74 1.000 

3 19.87 20.15 0.986 19.87 1.000 

Table 14. Test Structure 2 - Comparison between 

initial (ωI) and updated numerical (ωU) response with 

incomplete field monitoring observations (ωE) 

Mode 
ωEi 

[rad/s] 

ωIi 

[rad/s] 
ωEi/ ωIi 

ωUi 

[rad/s] 
ωEi/ ωUi 

1 21.00 21.28 0.987 20.98 1.001 

2 21.96 22.24 0.987 21.96 1.000 

3 22.47 22.89 0.982 22.46 1.000 

4. REAL FIELD MONITORING DATA – CASE STUDY 

A real building (an Elementary School building in Italy) was selected as case study for testing the 

methodology using real field monitoring data. In order to fulfill energy qualification of buildings, the 

building was monitored and a characterization of the dynamic parameters was performed. 

4.1. General description of the building 

The building is a 3-storey RC concrete frame structure, showed in its plan view in Figure 11. The 

whole building consists in three parts, divided by two seismic joints: secondary school, entrance of the 

building and elementary school. The dynamic identification measurements were done considering only 

the two edges of the building, without including the entrance. Only the part represented by the 

secondary school, was considered for testing the updating methodology. In the secondary school 

structure, all the vertical elements are continuous from the foundation to the top and the slabs are 

oriented along the longitudinal direction in all the entire building. The frame part is connected to the 

staircase (see the extreme left edge of Figure 11) which presents a wall thickness of 40 cm. 

 

 

Figure 11. Plan view of the school structure (3
rd

 level) 

4.2. Dynamic identification measurements 

The dynamic identification was performed considering a total of 8 tri-axial seismometers (geophones). 

 
Table 15. Experimental modal result on the Secondary School building 

Modes T [sec] f [Hz] ω [rad/sec] 

1 Flexural XY 0.166667 6.000 37.69911184 

2 Flexural Y 0.135593 7.375 46.33849164 

3 Flexural X 0.123077 8.125 51.05088062 

 

The monitoring was done by positioning the instruments at the corners of each storey. In this way, the 

modal displacements of the first three eigenvectors can be reasonably assigned to the nodes at the 



corners of the frame structure, for each level. Under the hypothesis of infinite stiffness in plane of the 

slab, only two instruments are enough to obtain the modal displacements for all the structural nodes. 

 

 

Figure 12. Geophones (blue) - Position at 1
st
 floor 

 

Figure 13. Geophones (blue) - Position at 2
nd

 & 3
rd

 floor 

4.2.1 Mode shape expansion 

Based on the fact that measured mode shape informations from sensor locations are fewer than the 

DOFs in the analytical model, mode shape expansion is employed to extrapolate the measured mode 

shapes such that they can be compared with the analytical numerical results. Each of the three mode 

shapes are obtained from the measured data by plotting the normalized measured displacements of the 

nodes at the corner of each storey. Consequently, the displacements of the other nodes are evaluated. 

4.3 Results of the updating methodology 

The analyses performed, considers three different types of parameter distribution, simulating the 

numerical models with one value of Young’s Modulus for the entire structure, one for all the elements 

belonging to the same storey and a different value for each of the elements. An increasing number of 

generated numerical models was considered in order to understand the variability of the Generalized 

Modal Error (GME). No variability of the mass was taken into account for this specific case. 

 
Table 16. Results from simulation type 1 

Models μfck [MPa] σfck [MPa] GME E [kPa] 

1000 18 6 1.234 3.39e+07 

2000 18 6 0.261 3.49e+07 

3000 18 6 0.171 3.52e+07 

4000 18 6 0.137 3.53e+07 

5000 18 6 0.201 3.52e+07 

6000 18 6 0.167 3.53e+07 

7000 18 6 0.219 3.51e+07 

8000 18 6 0.171 3.52e+07 
 

Figure 14. Variation of GME for sim. type 1

Table 17. Results from simulation type 2 

Models μfck [MPa] σfck [MPa] GME 

1000 18 6 5.7868 

2000 18 6 3.4714 

3000 18 6 3.9096 

4000 18 6 4.2469 

5000 18 6 3.2437 

6000 18 6 3.4714 

7000 18 6 3.9096 

8000 18 6 3.2437 
 

Figure 15. Variation of the GME for sim. type 2  



Table 18. Results from simulation type 3 

Models μfck [MPa] σfck [MPa] GME 

1000 18 6 9.0707 

2000 18 6 9.8107 

3000 18 6 9.793 

4000 18 6 9.3882 

5000 18 6 8.5293 

6000 18 6 9.5245 

7000 18 6 8.8147 

8000 18 6 8.1432 

  

Figure 16. Variation of the GME for sim. type 3 

 

Simulation type 1 (Figure 14) exhibited the best results among all the analyses performed while 

simulation type 2 (Figure 15) and 3 (Figure 16) would probably require a higher number of simulated 

models for the GEM to stabilize. The curve which indicates the error index, together with the number 

of simulated models, rapidly decreases after a number of 2000 simulations. 

One should note, though, that only the first mode was considered in the updating process, due to the 

fact that large discrepancies have been found between experimental and numerical deformed shapes 

for mode 2 and mode 3. In order to avoid this kind of uncertainty in the process, only mode 1 was 

taken into account for the updating of the numerical model. Considering the characteristics of the 

generation set yielding the best results, a calibration of the sensitivity parameter (Table 19) generation 

by varying mean and standard deviation of the concrete compressive strength was carried out so as to 

improve the matching between experimental and numerical modal response, as illustrated in Table 20 

and Table 21. The updated model exhibited 0.03% of difference between numerical and experimental 

eigenfrequency values, while the Young’s Modulus increased up to 20% respect the initial value of 

30000 MPa (Table 19). 

 
Table 19. Calibration of the sensitivity parameter (Young’s Modulus) generation by varying mean and 

standard deviation of the concrete compressive strength 

Simulation Type Models μfck [MPa] σfck [MPa] Updated Model GME E [kPa] 

1 1 8000 20 6 1781 0.0013138 35995000 

2 1 8000 21 6 852 0.0000864 36050000 

3 1 8000 22 6 759 0.0026489 35964000 

 
Table 20. Results from calibration of the sensitivity parameter generation in term of eigenfrequecies 

Simulation Mode ωi [rad/s] ωU [rad/s] ωE [rad/s] ωi/ωE ωU/ωE 

1 1 34.381 37.660 37.699 0.912 0.999 

2 1 34.381 37.689 37.699 0.912 0.999 

3 1 34.381 37.644 37.699 0.912 0.998 

 
Table 21. Secondary School building - Comparison between initial (ωI) and updated numerical (ωU) 

response with incomplete field monitoring observations (ωE) 

Mode ωi [rad/s] ωU [rad/s] ωE [rad/s] ωi/ωE ωU/ωE 

1 34.381 37.309 37.699 0.912 0.990 

 

5. CONCLUDING REMARKS  

The present work studied the use of dynamic identification measurements in the FE model updating of 

buildings. A methodology based on Montecarlo simulation scheme to update numerical models was 

proposed and calibrated by means of a parametric study using simulated testing structures and a real 

case-study.  

 



When considering simulated field monitoring results, a good matching between experimental and 

numerical modal response has been encountered. Among the aforementioned analyses, the fact of 

considering incomplete simulated experimental data, i.e. reducing the number of modes from 20 

modes up to the first three fundamental ones and considering only 3 (translational) modal DOFs per 

node, lead the algorithm to improve the matching with the experimental data in terms of a better 

comparison between experimental and numerical eigenfrequencies. Lower Generalized Modal Error 

values were obtained and this can be explained by the fact that a fewer number of parameters have to 

match the experimental quantities. However, concerning the modal deformed shape, the analysis 

showed poorer results comparing the same analysis using complete measured data. 

 

In case numerical and experimental mode shapes do not correspond, such as the second and the third 

modes, considering the Young’s Modulus as the only sensitivity parameter is not enough for matching 

the dynamic identification measurements. The addition of confidence parameters to the field 

monitoring results (e.g., through Bayesian updating), in case the detail of the information on the 

structure is poor, will help the algorithm to find more reliable matching of the field measurements. 

 

Generally, the response in terms of eigenfrequencies always enabled good improvements towards the 

observed behaviour at the end of the updating process. However, from what it could be observed in the 

case-study building, the updated numerical deformed shapes didn’t present a good matching with the 

field monitoring mode shapes. In order to overcome this problem a higher number of simulations or 

introducing a more efficient type of sampling at the beginning of the algorithm is needed. Latin 

Hypercube Sampling (LHS) might be implemented in the routine, in addition to the Montecarlo 

Simulation, in order to optimize the size of the samples for matching between the numerical models 

and experimental quantities. 

 

The proposed updating methodology will yield more reliable models, using field monitoring data, 

which can be used for subsequent updating of fragility curves. This will also allow one to understand 

how much the changes in the properties of the numerical model will actually influence the 

vulnerability of the building. If a similar simulation scheme is carried out in terms of fragility analysis, 

a direct correlation between monitored parameters, undamaged and damaged building fragility might 

be sought, with the contribution of shaking table test results. 
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