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SUMMARY:

The overlaying mesh method (OMM) is an analytical approach that overlaps two or more independent
different-sized-mesh models in the finite element analysis. In the OMM, detailed mesh model is used in the
target area under consideration, with coarse mesh model elsewhere, in order to optimize calculation effort. In this
study, we performed parametric study to investigate the accuracy of the analysis results by changing the mesh
sizes, ground properties and pile characteristics in pile-ground interaction system.
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1. INTRODUCTION

The Overlaying mesh method (OMM) is an analytical approach that overlaps two or more independent
different-sized-mesh models. In the OMM, detailed mesh model is used in elected area under
consideration, with coarser mesh model elsewhere, in order to optimize calculation effort. In the
previous study. (Belytchko et.al. 1990, p. 71) different size models are used to express a complex area
with different material constants, but same type elements, such as two dimensional plane strain
elements are used. In this research, we propose a new application method of the overlaying mesh
method using different type elements such as beam elements and solid elements. We analyzed two
types of pile foundation models using OMM, and proved that the proposed method is valid.

2. THEORY OF THE PROPOSED METHOD
2.1. Derivation of the fundamental equations for the OMM

In the OMM, two or more different-sized-mesh models are used, one is for modeling the wide area,
which we call Global area, the other/others is/are used to model detailed area(s), which we call Local
area(s), where we want to know the detailed behavior. In the soil-structure interaction problem, for
example, the former is used to model the ground which widely extends, and the latter is used to model
the structure of which shape is complex. aor
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Let designate the Global area as QU the Local area as O

Q" and the boundary between these areas as I™°". The
image of the relationship of them is illustrated in Fig.1.
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Displacement fields are independently defined in each
Q% and QF ie., 4, and ut, respectively. The actual
displacement u; inQ* is defined as the sum of #,° and /",
while u; is equal to u® outside the QL. Namely, the Figure 1. Superimposition of
global and local areas



displacement u; is defined as the following equations.

u,=u’ +u’ in QF 2. 1)

u. =u’ in Q°-QF (2.2)
To satisfy the continuity of the displacement at the boundary I ", the following condition is needed.

L _ GL
u; =0 on I 2.3)

Displacements #;° and ;" in Q¢ andQ* are expressed by using shape function matrices N° and N*

and nodal displacement vectors T and % as follows.

G _ AG..G
u; =N;ju, (2. 4)
L _ ALt
up =Ny 2.5)
By partially differentiating Eq. (2. 1) and using above equations, we obtain strain &, as,
_ .G, L
&y =&y T & (2.6)
In which
G _ pG @
&y = Byur (2.7)
L pr_ L
& = B[jkblk (2. 8)
By using the principle of virtual work, we can obtain the next equation.
[ 08,Dye,dQ = dubdQ+] utdr (2.9)

Where, O¢jj, ou; , by, ti, Dy are virtual strain, virtual displacement, body force, surface traction and
constitutive tensor, respectively. The left side of the equation stands for the virtual work due to the
internal strains and the right side represents the virtual work done by the external forces. By
substituting Eq. (2. 1), (2. 6), (2. 7) and (2. 8) into Eq. (2. 9), we can obtain the following equations.

[ 8(e) +e))Dy (8] +£])dQ

_ G L G L

= [ Sf +ul)bdQ+[ S +ulyt,dr 010
[ (BS,8um + BL,Sun)Dyy (BG tn + Bl ttn)dO

ijm ijm

:IQ(Nféuf +N;5uf)bidQ+JF(Nf5“f + Ny o )t dl 2. 11)

By rewriting the above equations in the matrix form, we obtain the following equation.



e )
K™Kl / 2. 12)

KG = jQ(; BGDyleISdQG
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Where,

K" =[_ B/D,BldQ"

k=] . Bi DB .
K=, B/ D,,BidQ"

/7= NibdQ+| NPtdr

7' =[ N/bdQ+ [ Nitar

In which K¢ and f are stiffness matrix and external force vector for the global area Q°, and K* and /-
are stiffness matrix and external force vector for the local areaQ”, respectively.

2.2 Linking the beam element and the plane strain solid element

According to the previous work, linkage matrices between global and local plane strain elements, K-
and K“©, are obtained from Eq. (2. 13). Linkage matrices between plane strain elements and beam
elements, however, cannot be obtained in the same manner, because the strains are different between
the beam element and the solid element. It is, therefore, necessary to develop a new method to link
them.

The global nodal displacement at the same position as that of the local node, u “ can be obtained by

using the global shape function N and global nodal displacements U5 as Eq. (2. 14).
16 _ ArG 9
u,” =N, ux (2. 14)

Global strain at arbitrary point, %, can be obtained from Eq. (2. 7), and also obtained using other
element if the point is included inside the element and the coordinate of the nodal points of the
element. Therefore, global strain can be obtained by using u “ and local shape function B" .

—G
G _ pG
& =By ui

= Bjui 2. 15)
Using Eq. (2. 14), we can obtain the following relationships.
BLNSui = Buy®
= BSur
Bji = BNy 2. 16)

Therefore, [K*“ Jcan be obtained as follows.



[k*]=[_ BLD,,BSd0"
= [, B DB N
= [.. BiD;yBL,dQ" - N,
=[x V] 2.17)

In the same manner, K is expressed in the following way.

[ko]=[ve ] [k (2. 18)
2.3 Constitution of the local mesh

Figure 2 shows the total system which includes global model and local model. The local model
contains beam elements of which area is designated by QC. The local area modeled by solid elements
is expressed by QP and the global area by Q. It is assumed that the areas Q* and Q€ are not in
contact. The constants of elasticity in the areasQ” and QP are the same and expressed as Dlijkl and in
the areaQC, Dlijkl in the global model and DLijkl in the local model.

As for the boundaries, the boundary between Q* and QF is designated by /"%, in the same manner,
the boundary between QF and Q€ is designated by 7>C. The boundary is divided into /™, 7 and
I according to the division of the areas Q*, Q% and QF, respectively.

With the definitions above, K%, K* and K are obtained as follows.

G _ Gl pG
K= oo B DinaBi A2 (2. 19) Local modd OF
Beam j I
K*=[_,BID},BidQ~+ | _BDj,BidO e B
(2. 20) re |

FAB
K =], ByD)BidQ+ | . B DjBide

2.21) o

Equation (2. 10) can be written in the tensor form as; Figure 2. Superimposition of solid and

beam elements

G G G L L
[ 36Dy eidQ+ [, 06] Dy ed02
L G L L L L
+ .[QL 08, Dy &, dQY” + J-QL 0g,; Dy, €,dQ

= [ aulbdQ+ | oulbdQ+ [ oultdl + | duftdr
(2.22)

The displacements, u;, can be written in the following equation, in which symbols G, L, A, B and C
stand for Global, Local and areas A, B and C.



ul =u’ in Q*
u, =4 u’ +u =u’ +u/’ in Q°

ul +ul =u’ +u!* in Q°
2.23)

As for the global displacement concerning the virtual displacement&uf , and strain 555 , We can obtain

the following equation.
IQA gD, ey'dQ+ I e’ D) & dQ+ j Se;/ D) &g dQ
+ IQB é'g;BD;H gldQ + IQC 555CD; el dQ 0 24
2.24
= [ ouf'bd+|  oubdQ+|  oulbd0
Q Q Q

n J'r out.dr + jrauth,.dF + J'r&tfctidr

By partially integrating the left part of Eq. (2. 24) using the Green’s formula, the following equation is
obtained.

_IQ”{ lgk”—'_b}é‘uGAdQ ,[ {Dl 5k11+5k11)+bf}5“f63d9

ijkl

—jQC{DjWg,d, +D’ gk”+b}5uGCdQ . D;k,ggA 4t )oultdr
+.[r3 ikl 5k1 +5k1 )”./ — }5uGBdF+j- z;kl 5k1 +5k1 )’”f‘ti}&lfcdr (2.25)
[ ADjel! = Dl e + &t )i n? uf*ar

1 L 1c\ . C o GBC
+J. BC{ D ‘9k1 +‘9k1 ) (Dyklgkl + D€y )}”1 ou;”dl' =0

As the global displacements u;“ is continuous in area Q, the following relations can exist.

ou=ou® =’ on T
ou =ou’ =ou on T

(2.26)
2.27)

On the other hand, as for the local displacement concerning the virtual displacement §ulL , and
strain 5€§ , we can obtain the following equation.
LB 1 GB LC L GC
IQB 5547 Dy,dgkl dQ+IQC 5547 Dl],dg,d dQ

+I 5€LBD ,gk,BdQ+.[ é}chDyk,g,fdQ (2.28)

ijk

= [ ou"bdQ+| oulbdQ+ |, ou"tdr+[ o/ tdr

In the same manner as in the global area, Eq. (2. 28) can be written as,



_J‘QE lfkl kll+8kll)+b}5uGBdQ

_IQC D;klgkll +D,,Lk15k” +b, }C?MGCdQ

+.[rs zjkl(gkl +e&p )n//B —tl.}&'ll.GBdl“—rJ-rc {(D;jk[gkl +Dyk18k1 C }5MGCdF (2.29)
+J.r {Dl/kl‘gkl zjkl(gkl +&5 )}nf&uiGABdF

+'[ { ykl(g +‘9k1) (Dyklgkl +DyLk15kzc)}”jC§”iGBch:0

And,

LB _ AB
ou;” =0 on I 2. 30)

In the Eq. (2. 25) and (2. 29), as the virtual displacements are arbitrary, we obtain the following
equations.

Dy &4, +b, =0 in Q' 2.31)

Dy (g7 +€0)+b, =0 in Q° (2.32)
Dy &0 +Dyei +b, =0 in Q° (2.33)
Dyyéqy +Dyyei +b, =0 in Q° (2. 34)
Dyeq'nt —t,=0 on I 2.35)

Dy, (e” +& )] —1,=0 on I” (2. 36)
(Dyueq” +Dyyeins —t, =0 on TI°¢ (2.37)
(Dyklgkl +DyLklgkl )” —t,=0 on I (2. 38)
{Duk,gk, — Dy (e + &5 )} n;=0 on TI* (2.39)
{ Dy, (&S +e) - (Dyk,g,d +Dyk,g,d )} nf =0 on TI* (2. 40)
{ ykl(gkl +5k1 )— (Dz]klgkl +Dyk15kz )}”jc =0 on TI* (2.41)

By subtracting Eq. (2. 34) from Eq. (2. 33), Eq. (2. 38) from Eq. (2. 37), Eq. (2. 41) from Eq. (2. 40),
we obtain Eq. (2. 42), (2. 43), (2. 44), respectively.

(Dykl z]kl)gkll = in  Q° (2.42)
GC,C _ c

(Djy = Dy)eg ny =0 on T 2. 43)
GC C BC

(Dju = Dj)eg ny =0 on T (2. 44)

From Eq. (2. 43) and (2. 44), equilibrium of stress is independently satisfied within the global model
on the boundaries 7> and /¢, and normal stress outward direction is 0. From Eq. (2. 42), (2. 43), (2.
44) we can get the next relationship.

. C
Dy = Dy)en = in - Q (2. 45)



This means that the stress of beam elements due to global model is 0 on the boundary of area Q°.
And from Eq. (2. 45)

egf=0 in Q° (2. 46)
Eq. (2. 33) and (2. 34) become

DL+ =0 in  QF (2.47)

y

In the same way, Eq. (2. 40) and (2. 41) become

{D;_kl(ggB +51§B)—D§k15/fzc}nf =0 on TI* (2. 48)
This means that the stresses due to displacements in local model within area Q€ on the boundary /7,

equilibrium to those within areaQ”. Stresses in the beam elements, therefore, can be expressed only
by the local model and obtained only by the stiffness of the beam elements (Ohta et.al. 2007).

3. ANALYTICAL EXAMPLES 12 5/

3.1 Vertical pile model 1o — Lom
RRRIER

The vertical pile-footing-ground model used in oA 2l 4 02 | |14m gm

this analysis is illustrated in Fig. 3. Ground and .,

piles and footing are assumed to be elastic

materials. Sol B — o

Young’s modulus, sectional area, and
moment inertia of the section of the pile are
200GPa, 0.2366>10°m’, and 0.3940><10m*, Figure 3. Vertical pile model
respectively. Parameter of the plane elements

are listed in Table3. 1.

40m

Finite element model with OMM is shown in Fig. 4. This model is divided into 800 global solid
elements whose area is 1.0m> 16800 local solid elements whose area is 0.01m> and 160 local beam
elements whose length is 0.1m(OMM FEM). To compare the accuracy, the ordinal finite mesh
model(ordinal model) and coarse-mesh model(mesh 800) are also analysed. The ordinal finite mesh
model is divided into 80000 solid elements whose area is 0.0lm2 and 160 beam elements, the
coarse-mesh model corresponds to the Global solid elements of the model shown in Fig.4.

Table 3.1. Parameter of the plane element

Shearwave velocity(m/s) Unit weight(kN/m") Poisson’s ration
Soil A 150 17 0.3
Soil B 450 17 0.3
Footing 1500 17 0.3

Numerical analysis results are compared in Fig. 5, 6 and 7. Horizontal placements of the beam
elements are illustrated in Fig. 5, vertical displacements in Fig. 6 and rotational angles in Fig. 7. From
these figures, it can be recognized that the differences of vertical response displacements between
these models are very small but for the horizontal and rotational angle the differences are not so small.



The difference of the horizontal
response displacements between the
ordinal FEM and OMM FEM is about
0.1mm, and this is very small compared
with the maximum response of the
system of 2.9mm, in the vertical
direction, the difference is about
0.03mm, while the maximum response
is about 13.5mm. On the other hand, the
differences of them between the ordinal
FEM and mesh 800 are 0.02mm in

horizontal direction and 0.08mm in ‘
vertical direction respectively, and they Figure 4. Finite element mesh of vertical piles with OMM

are about 4times of the differences 2 ordinal FEM —
between the ordinal FEM and OMM 3 o X

FEM. This means the validity of the
proposed method. The distributions of
the response displacements in the total

E
system are shown in Fig. 8,9, 10 and 11. §°
From these figures the results are almost 7
same in two models. 8
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Figure 5. Comparison of horizontal displacements
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Figure 6. Comparison of vertical displacements Figure 7. Comparison of rotational angle of pile

Figure 8. Distribution of horizontal displacement Figure 9. Distribution of horizontal displacement
from normal finite element mesh from finite element mesh with OMM
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Figure 10. Distribution of vertical displacement Figure 11. Distribution of vertical displacement
from normal finite element mesh from finite element mesh with OMM

3.2 Battered pile model

12.5kN/m
Figure 12 shows the battered pile-ground-footing 16m 2y_4m_2n 16m
model. The material constants are the same as _ ; !
those of the vertical pile models. Fig. 13 is OMM sl A sm om
model. The OMM model is divided into 800 L
global solid elements whose area is 1.0m?, 16960 1 LI Lo J
local solid elements whose area is 0.01m” and 160 i o foo lim
local beam elements. This model is called gm o
“OMMcasel”. The ordinal model is divided into
80652 solid elements whose area is 0.01m” and aom
160 beam elements. This model us called “ordinal . ‘
FEM”. The mesh of the ordinal model is very Figure 12. Battered pile model

complicated to express the battered piles, on the

other hand, the mesh is very simple for the OMM model as shown in Fig. 13. Same global mesh as in
the vertical pile is used for the OMM. In addition to these two models, two more models,
“OMMcase2” and “OMMcase3” models were analysed. The size of global mesh of "OMM case2" and
"OMM case3" is equal to the global mesh of "OMM casel" i.e. Im. But the local mesh of "OMM
case2" is 0.25m and coarser than that of "OMM casel"(0.1m), and the local mesh area of "OMM
case3"(mesh size is 0.1m same as "OMM casel") is 6m and narrower than that of "OMM casel".

The comparisons of horizontal and vertical displacements and rotational angle are made in Fig. 14, 15
and 16. In these figures, the differences between these models are little larger than those from the
vertical piles model, especially for rotational angle.

The CPU time to analyze “ordinal FEM” and “OMMcasel” models are almost same in both cases.
However, to generate the OMM is

very easy, because we just put the

battered piles models on the global = i
model (ground model). This is a '
typical advantage of using OMM.
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Figure 13. Finite element mesh of battered piles with OMM
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Figure 14. Comparison of horizontal displacements

4. CONCLUSIONS

We derived the OMM in application of the
soil-structure interaction system. Then we
examined the validity of the method. For vertical
pile model, we could get good agreement between
the ordinal model and the OMM, but in the
analysis of battered pile model, the difference is
little larger than those for vertical pile models.
We need to examine the reason and establish the
better analysis method for the soil-structure
interaction problem, and more we need to extend
the method to three dimensional problem in
which the advantage of the method will be
remarkable.
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