
 
 

Figure 1. Superimposition of  
global and local areas 
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SUMMARY:  
The overlaying mesh method (OMM) is an analytical approach that overlaps two or more independent 
different-sized-mesh models in the finite element analysis. In the OMM, detailed mesh model is used in the 
target area under consideration, with coarse mesh model elsewhere, in order to optimize calculation effort. In this 
study, we performed parametric study to investigate the accuracy of the analysis results by changing the mesh 
sizes, ground properties and pile characteristics in pile-ground interaction system. 
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1. INTRODUCTION 
 
The Overlaying mesh method (OMM) is an analytical approach that overlaps two or more independent 
different-sized-mesh models. In the OMM, detailed mesh model is used in elected area under 
consideration, with coarser mesh model elsewhere, in order to optimize calculation effort. In the 
previous study. (Belytchko et.al. 1990, p. 71) different size models are used to express a complex area 
with different material constants, but same type elements, such as two dimensional plane strain 
elements are used. In this research, we propose a new application method of the overlaying mesh 
method using different type elements such as beam elements and solid elements. We analyzed two 
types of pile foundation models using OMM, and proved that the proposed method is valid. 
 
 
2. THEORY OF THE PROPOSED METHOD  
 
2.1. Derivation of the fundamental equations for the OMM  
 
In the OMM, two or more different-sized-mesh models are used, one is for modeling the wide area, 
which we call Global area, the other/others is/are used to model detailed area(s), which we call Local 
area(s), where we want to know the detailed behavior. In the soil-structure interaction problem, for 
example, the former is used to model the ground which widely extends, and the latter is used to model 
the structure of which shape is complex. 
 
Let designate the Global area as ΩG, the Local area as 
ΩL and the boundary between these areas as ΓGL. The 
image of the relationship of them is illustrated in Fig.1.   
 
Displacement fields are independently defined in each 
ΩG and ΩL, i.e., ui

G and ui
L, respectively.  The actual 

displacement ui inΩL is defined as the sum of ui
G and ui

L, 
while ui is equal to ui

G outside the ΩL. Namely, the 



displacement ui is defined as the following equations. 
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To satisfy the continuity of the displacement at the boundaryΓGL, the following condition is needed. 
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Displacements ui

G and ui
L in ΩG andΩL  are expressed by using shape function matrices NG and NL 

and nodal displacement vectors  and  as follows. 
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By partially differentiating Eq. (2. 1) and using above equations, we obtain strain ijε as, 
 

L
ij

G
ijij εεε +=      (2. 6) 

 
In which 
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By using the principle of virtual work, we can obtain the next equation. 
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Where, δεij, δui , bi, ti, Dijkl are virtual strain, virtual displacement, body force, surface traction and 
constitutive tensor, respectively.  The left side of the equation stands for the virtual work due to the 
internal strains and the right side represents the virtual work done by the external forces.  By 
substituting Eq. (2. 1), (2. 6), (2. 7) and (2. 8) into Eq. (2. 9), we can obtain the following equations. 
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By rewriting the above equations in the matrix form, we obtain the following equation. 
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Where, 
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In which KG and fG are stiffness matrix and external force vector for the global area ΩG, and KL and f L 
are stiffness matrix and external force vector for the local areaΩL, respectively. 
 
2.2 Linking the beam element and the plane strain solid element 
 
According to the previous work, linkage matrices between global and local plane strain elements, KGL 
and KLG, are obtained from Eq. (2. 13). Linkage matrices between plane strain elements and beam 
elements, however, cannot be obtained in the same manner, because the strains are different between 
the beam element and the solid element. It is, therefore, necessary to develop a new method to link 
them.  
The global nodal displacement at the same position as that of the local node, u’G can be obtained by 
using the global shape function NG and global nodal displacements  as Eq. (2. 14). 
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Global strain at arbitrary point, εG, can be obtained from Eq. (2. 7), and also obtained using other 
element if the point is included inside the element and the coordinate of the nodal points of the 
element. Therefore, global strain can be obtained by using u’G and local shape function BL . 
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Using Eq. (2. 14), we can obtain the following relationships. 
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Therefore, [KLG ]can be obtained as follows. 
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In the same manner, KGL is expressed in the following way. 
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2.3 Constitution of the local mesh 
 
Figure 2 shows the total system which includes global model and local model. The local model 
contains beam elements of which area is designated by ΩC. The local area modeled by solid elements 
is expressed by ΩB and the global area by ΩA. It is assumed that the areas ΩA and ΩC are not in 
contact. The constants of elasticity in the areasΩA and ΩB are the same and expressed as D1

ijkl and in 
the areaΩC, D1

ijkl in the global model and DL
ijkl in the local model. 

 
As for the boundaries, the boundary between ΩA and ΩB is designated by ΓAB, in the same manner, 
the boundary between ΩB and ΩC is designated by ΓBC. The boundary is divided into ΓA, ΓB and 
ΓC according to the division of the areas ΩA, ΩB and ΩC, respectively. 
 
With the definitions above, KG, KL and KGL are obtained as follows. 
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Equation (2. 10) can be written in the tensor form as; 
 

∫∫∫∫

∫∫

∫∫

ΓΓΩΩ

ΩΩ

ΩΩ

Γ+Γ+Ω+Ω=

Ω+Ω+

Ω+Ω

dtudtudbudbu

dDdD

dDdD

i
L
ii

G
ii

L
ii

G
i

LL
klijkl

L
ij

LG
klijkl

L
ij

LL
klijkl

G
ij

G
klijkl

G
ij

L

LL

L

δδδδ

εδεεδε

εδεεδε

 (2. 22) 
 
The displacements, ui, can be written in the following equation, in which symbols G, L, A, B and C 
stand for Global, Local and areas A, B and C. 
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Figure 2. Superimposition of solid and 

beam elements 
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As for the global displacement concerning the virtual displacement G

iuδ , and strain G
ijδε , we can obtain 

the following equation. 
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By partially integrating the left part of Eq. (2. 24) using the Green’s formula, the following equation is 
obtained. 
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As the global displacements ui

G is continuous in area Ω, the following relations can exist. 
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On the other hand, as for the local displacement concerning the virtual displacement L

iuδ , and 

strain L
ijδε , we can obtain the following equation. 
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In the same manner as in the global area, Eq. (2. 28) can be written as, 
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And, 
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In the Eq. (2. 25) and (2. 29), as the virtual displacements are arbitrary, we obtain the following 
equations. 
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By subtracting Eq. (2. 34) from Eq. (2. 33), Eq. (2. 38) from Eq. (2. 37), Eq. (2. 41) from Eq. (2. 40), 
we obtain Eq. (2. 42), (2. 43), (2. 44), respectively. 
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From Eq. (2. 43) and (2. 44), equilibrium of stress is independently satisfied within the global model 
on the boundaries ΓBC and ΓC, and normal stress outward direction is 0. From Eq. (2. 42), (2. 43), (2. 
44) we can get the next relationship. 
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Figure 3. Vertical pile model 

 
This means that the stress of beam elements due to global model is 0 on the boundary of area ΩC.  
And from Eq. (2. 45) 
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Eq. (2. 33) and (2. 34) become 
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In the same way, Eq. (2. 40) and (2. 41) become  
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This means that the stresses due to displacements in local model within area ΩC on the boundaryΓBC, 
equilibrium to those within areaΩB. Stresses in the beam elements, therefore, can be expressed only 
by the local model and obtained only by the stiffness of the beam elements (Ohta et.al. 2007). 
 
 
3. ANALYTICAL EXAMPLES 
 
3.1 Vertical pile model 
 
The vertical pile-footing-ground model used in 
this analysis is illustrated in Fig. 3. Ground and 
piles and footing are assumed to be elastic 
materials. 
  
Young’s modulus, sectional area, and   
moment inertia of the section of the pile are 
200GPa, 0.2366×10-5m2, and 0.3940×10-5m4, 
respectively. Parameter of the plane elements 
are listed in Table3. 1. 
    
Finite element model with OMM is shown in Fig. 4. This model is divided into 800 global solid 
elements whose area is 1.0m2, 16800 local solid elements whose area is 0.01m2 and 160 local beam 
elements whose length is 0.1m(OMM FEM). To compare the accuracy, the ordinal finite mesh 
model(ordinal model) and coarse-mesh model(mesh 800) are also analysed. The ordinal finite mesh 
model is divided into 80000 solid elements whose area is 0.01m2 and 160 beam elements, the 
coarse-mesh model corresponds to the Global solid elements of the model shown in Fig.4.  
 
Table 3.1. Parameter of the plane element 

 
 
Numerical analysis results are compared in Fig. 5, 6 and 7. Horizontal placements of the beam 
elements are illustrated in Fig. 5, vertical displacements in Fig. 6 and rotational angles in Fig. 7. From 
these figures, it can be recognized that the differences of vertical response displacements between 
these models are very small but for the horizontal and rotational angle the differences are not so small. 

 Shearwave velocity(m/s) Unit weight(kN/m3) Poisson’s ration 
Soil A 150 17 0.3 
Soil B 450 17 0.3 
Footing 1500 17 0.3 



Figure 4. Finite element mesh of vertical piles with OMM 
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Figure 6. Comparison of vertical displacements 

Figure 8. Distribution of horizontal displacement 
    from normal finite element mesh 

Figure 9. Distribution of horizontal displacement 
        from finite element mesh with OMM 

The difference of the horizontal 
response displacements between the 
ordinal FEM and OMM FEM is about 
0.1mm, and this is very small compared 
with the maximum response of the 
system of 2.9mm, in the vertical 
direction, the difference is about 
0.03mm, while the maximum response 
is about 13.5mm. On the other hand, the 
differences of them between the ordinal 
FEM and mesh 800 are 0.02mm in 
horizontal direction and 0.08mm in 
vertical direction respectively, and they 

are about 4times of the differences 
between the ordinal FEM and OMM 
FEM. This means the validity of the 
proposed method. The distributions of 
the response displacements in the total 
system are shown in Fig. 8, 9, 10 and 11. 
From these figures the results are almost 
same in two models.  
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Figure 5. Comparison of horizontal displacements 
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Figure 7. Comparison of rotational angle of pile 



Figure 11. Distribution of vertical displacement 
    from finite element mesh with OMM 

Figure 10. Distribution of vertical displacement 
    from normal finite element mesh 
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Figure 12. Battered pile model 

3.2 Battered pile model 
 
Figure 12 shows the battered pile-ground-footing 
model. The material constants are the same as 
those of the vertical pile models. Fig. 13 is OMM 
model. The OMM model is divided into 800 
global solid elements whose area is 1.0m2, 16960 
local solid elements whose area is 0.01m2 and 160 
local beam elements. This model is called 
“OMMcase1”. The ordinal model is divided into 
80652 solid elements whose area is 0.01m2 and 
160 beam elements. This model us called “ordinal 
FEM”. The mesh of the ordinal model is very 
complicated to express the battered piles, on the 
other hand, the mesh is very simple for the OMM model as shown in Fig. 13. Same global mesh as in 
the vertical pile is used for the OMM.  In addition to these two models, two more models, 
“OMMcase2” and “OMMcase3” models were analysed. The size of global mesh of "OMM case2" and 
"OMM case3" is equal to the global mesh of "OMM case1" i.e. 1m.  But the local mesh of "OMM 
case2" is 0.25m and coarser than that of "OMM case1"(0.1m), and the local mesh area of "OMM 
case3"(mesh size is 0.1m same as "OMM case1") is 6m and narrower than that of "OMM case1". 
 
The comparisons of horizontal and vertical displacements and rotational angle are made in Fig. 14, 15 
and 16. In these figures, the differences between these models are little larger than those from the 
vertical piles model, especially for rotational angle. 
 
The CPU time to analyze “ordinal FEM” and “OMMcase1” models are almost same in both cases. 
However, to generate the OMM is 
very easy, because we just put the 
battered piles models on the global 
model (ground model). This is a 
typical advantage of using OMM.  
 
 

 
Figure 13. Finite element mesh of battered piles with OMM 

 



 
 
4. CONCLUSIONS 
 
We derived the OMM in application of the 
soil-structure interaction system. Then we 
examined the validity of the method. For vertical 
pile model, we could get good agreement between 
the ordinal model and the OMM, but in the 
analysis of battered pile model, the difference is 
little larger than those for vertical pile models. 
We need to examine the reason and establish the 
better analysis method for the soil-structure 
interaction problem, and more we need to extend 
the method to three dimensional problem in 
which the advantage of the method will be 
remarkable. 
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Figure 14. Comparison of horizontal displacements 
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Figure 15. Comparison of vertical displacements 
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Figure 16. Comparison of rotational angle of pile 


