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SUMMARY: 
This study elucidates a method used to ascertain control variables such as the performance index and weight 
coefficient, at the beginning of structural design, without the need for dynamic response analysis. The authors 
study magneto-rheological fluid dampers (MR dampers) controlled by an optimal regulator system which is a 
linear control system, and use the damping factor to evaluate the structure response. First, the relation between 
weight coefficient and damping factor are shown and the physical meanings of the performance index and 
weight coefficient are discussed. Secondly, the influence that MR damper’s controllable range has on the 
maximum response is considered. And, then appropriate compensation is proposed.  
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1. INTRODUCTION 
 
Structural vibration control has improved rapidly. Recently, excessive modification control of 
base-isolated systems in case of large earthquakes is performed by passive control. If design structures 
are intended for excessive modification control during a large earthquake, then the structures transmit 
a short period element to the superstructure during a minor earthquake, creating anxiety about spoiling 
the base-isolated system’s effect. Therefore, some studies have been conducted to apply semi-active 
control to base-isolated systems (Fujitani, H. et al. (2004), Ramello, J. C. et al. (2002), Yoshioka, H. et 
al. (2002),). Semi-active systems present two distinct advantages. They can perform structural 
vibration control rather than passive control. Furthermore, it requires little energy compared with 
active control. However, semi-active control also presents the difficulty that construction of a control 
system and grasping a damping performance are difficult. 
 
The authors studied damping performance of the MR damper and optimal regulator systems as a 
semi-active control system. The MR damper has been anticipated for control of the response of civil 
and other structures in recent years because of its large force capacity and variable force characteristics. 
Optimal regulator system is a fundamental method among control methods. In this study, relations 
between control variables (weight coefficient) and control effects were examined by making a 
damping factor into an evaluation index as a preliminary study of the response prediction of 
semi-active controlled structures. 
 
 

2. COMPONENTS OF A SEMI-ACTIVE SYSTEM 
 
2.1 Magneto-Rheological Damper (MR damper) 
 
The maximum damping force of the MR damper used for this study is 10 kN. Its stroke is +/-300 mm 
as shown Table 2.1. Fig. 2.1 shows the force-displacement relation of the MR damper. The damping 
force can shift by the volume of electric current. It can therefore be controlled using a PC. The MR 



damper is modelled simply by a Bingham plastic model, as shown in Fig. 2.2, and the relation between 
the damper force and the electric current is approximated as Eqn. 2.1. 
 
 

Maximum Force 10kN 
Storoke ±300mm 

Electromagnet MAX.Current 5.0A 
MagnetoRheological fluid Bando : #230 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

F = sign(v)(−1807I − 822.4) + 2.07v  (2.1) 
F: damper force (N), I: electric current (A), v: velocity (mm/s) 

 
 
2.2 Optimal Regulator System (Yang,J.N. et al. (1975)) 
 
For optimal control theory, the authors apply the performance index shown in Eqn. 2.2 α, β, γ, are 
weight coefficients respectively related to displacement, velocity, and acceleration. 

 
J = ∫ 1

2
(α(ẍ + Ez̈)2 + βẋ2 + γx2 + u2) dt   (2.2) 

 
By increasing each coefficient, the corresponding quantity of state can be shrunk. For example, by 
increasing α, acceleration can be reduced. In optimal control, it is necessary to set up the weight 
coefficients in Eqn. 2.2 appropriately. 

Table 2.1. Dimensions of MR damper 

Figure 2.1. Force-displacement relationship of MR damper according to induced electric current 

-10

-5

0

5

10

-300 -200 -100 0 100 200 300

Displacement(mm)

Fo
rc

e(
kN

)

4A 

↑ 

0A 

-10

-5

0

5

10

-300 -200 -100 0 100 200 300

Displacement(mm)

Fo
rc

e(
kN

)

4A 

↑ 

0A 

-10

-5

0

5

10

-300 -200 -100 0 100 200 300

Displacement(mm)

Fo
rc

e(
kN

)

4A 

↑ 

0A 

(a) 0.1Hz, ±50mm (b) 0.1Hz, ±250mm 

(c) 0.5Hz, ±50mm (d) 0.5Hz, ±250mm 
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Figure 2.2. Bingham plastic model 



Optimal regulator theory is used for the flexibility system model shown with the equation of state of 
Eqn. 2.3 (M, mass; K, stiffness). Control power (𝑢) is a form of another formula (Eqn. 2.4). The 
feedback gain is given to the response displacement and velocity (S1, S2 ). 
 

Ẋ = AX + Bu  (2.3) 
   A = � 0 I

−M−1K 0�    B = � 0
M−1�   X = �x

ẋ�   
u = [S1  S2]X  (2.4) 

 
The equivalent viscous damping factor of the entire control drive is computed by considering that the 
feedback gain which starts displacement is stiffness and that velocity is a viscous damping coefficient: 
considering S1 is the equivalent stiffness and S2 is the viscous damping coefficient.  
 
 
3. RELATION BETWEEN THE WEIGHT COEFFICIENT AND DAMPING FACTOR  
 
3.1. Discussing the Weight Coefficient of Acceleration (𝛂) 
 
The performance index is set to Eqn. 3.1, when the effect of the weight coefficient of acceleration (α) 
is discussed. 
 

J = ∫(αẍ2 + u2) dt  (3.1) 
 
Eqn. 3.2 is derived from Eqn. 3.1, when variables are changed to the general format. 
 

J = ∫�XTQX + uTRU + 2XTNu�dt   (3.2) 

   𝑄＝ �𝛼𝜔4 0
0 0

� , 𝑅 = 𝛼
𝑀2 + 1,    𝑁 = �− 𝛼𝜔2

𝑀
0

�, ω = �K
M

    

 
The control force is given by Eqn. 3.3 in this equation. 
 

u = [S1  S2]X = −R−1(BTP + NT)X   (3.3) 
 
P is a solution of the Ricatti equation (Eqn. 3.4). 
 

ATP + PA − (PB + N)R−1�BTP + NT� + Q = 0   (3.4) 
 
P is set with Eqn. 3.5 (P is a positive-define and symmetric matrix). 
 

P = �P11 P12
P12 P22�   (3.5) 

 
From Eqn. 2.3, Eqn. 3.2, and Eqn. 3.4, the solution of the Ricatti equation is Eqn. 3.6. 
 

P11＝ω3M√2M�√M2 + α − M  
P12＝ω2�M√M2 + α − M2�   (3.6) 

P22＝ω�2(M2 + α)�M√M2 + α − M2  
 
Then, the control force is expressed by Eqn. 3.7 using Eqns. 3.3-3.6. 
 

u = [S1  S2]X = −Mω2 � M
√M2+α

− 1� x − Mω√2�M√M2+α−M2

√M2+α
ẋ   (3.7) 

 



Therefore, the equivalent stiffness (Keq), equivalent damping coefficient (Ceq), equivalent circular 
frequency (ωeq), and equivalent damping factor (heq) is Eqn. 3.8, Eqn. 3.9, Eqn. 3.10, and Eqn. 3.11. 
 

Keq = Mω2 + Mω2 � M
√M2+α

− 1� = Mω2

�1+ α
M2

  (3.8) 

Ceq =
Mω√2��1+ α

M2−1

�1+ α
M2

   (3.9) 

ωeq
2 = ω2

�1+ α
M2

 (3.10) 

heq = Ceq
2�MKeq

= �
1
2

− 1

2�1+ α
M2

  (3.11) 

 
From them, Keq is expected to be smaller, ωeq is also expected to be smaller, and damping will 
become larger if  is increased. In addition, heq has a limit value. It converges to 1

√2
(=0.707) if  

is infinity. Furthermore, it is determined only by the structure’s mass and weight coefficient of 
acceleration (α). 
 
3.2. Discussing the Weight Coefficient of Velocity (𝛃) 
 
The performance index is set to Eqn. 3.12, when the effect of the weight coefficient of velocity (β) is 
discussed. 
 

J = ∫(βẋ2 + u2) dt  (3.12) 
 
Equivalent stiffness (Keq), equivalent damping coefficient (Ceq), circular frequency (ωeq), and 
equivalent damping factor (heq) are determined respectively as shown in Eqn. 3.13, Eqn. 3.14, Eqn. 
3.15, and Eqn. 3.16 if the same development of section 3.1 is performed. 
 

Keq = K  (3.13) 

Ceq = �β  (3.14) 

ωeq = ω  (3.15) 

heq = Ceq

2�MKeq
= �β

2Mω2  (3.16) 

 
Contrary to the acceleration weight coefficient, when β is infinity, heq is also infinity. It is determined 
by the structure’s mass, circular frequency, and weight coefficient. However, Keq and ωeq do not 
change, even if β is increased. 
 
3.3. Discussing the Weight Coefficient of Displacement (𝛄) 
 
The performance index is set to Eqn. 3.17, when the effect of the weight coefficient of displacement 
(γ) is discussed. 
 

J = ∫(γx2 + u2) dt  (3.17) 
 
Equivalent stiffness (Keq), equivalent damping coefficient (Ceq), circular frequency (ωeq), and 
equivalent damping factor (heq) are determined respectively as shown in Eqn. 3.18, Eqn. 3.19, Eqn. 



3.20, and Eqn. 3.21 if the same development of section 3.1 is performed. 
 

Keq = �M2ω4 + γ  (3.18) 

Ceq = �2M(�M2ω4 + γ − Mω2) (3.19) 

ωeq = �ω4 + γ
M2 (3.20) 

heq = Ceq

2�MKeq
= �1

2
− Mω2

2�M2ω2+γ
   (3.21) 

 
As with the acceleration weight coefficient, when  is infinity,  heq  converges on 1

√2
(=0.707). 

However, different from the acceleration weight, it is determined by the structure’s mass, circular 
frequency and weight coefficient. Furthermore, Keq and ωeq is only increased if γ is increased. 
 
 
4. RESPONSE EVALUATION OF SEMI-ACTIVE CONTROLLED STRUCTURE 
 
4.1. Evaluation by the Equivalent Damping Factor 
 
A characteristic exists by which the control force cannot be applied in a direction that adds vibration: 
the MR damper can output only resistant force. Therefore, when an equivalent viscous damping factor 
estimates the control effect simply, maximum responses differ from actual controlled responses. For 
example, the maximum response displacements and floor accelerations were calculated for time 
history analysis against three actual observed ground motions. It is shown in Fig. 4.1. Then, the solid 
line “control” in Fig. 4.1 shows the maximum values which were produced by regarding Eqn. 3.1 as a 
performance index and the dot line “heq” shows those which were calculated by using heq. α was 
normalized by α/M2. There are some differences between “control” and “heq” when α/M2 is larger 
than 1.0. 
 

 
 

a) El Centro 1940 NS 

 
 

b) Hachinohe 1968 NS 

 
 

c) JMA Kobe 1995 NS 

Figure 4.1. Maximum responses in time history analysis 
 

4.2. Correction Coefficient 
 

The authors propose a correction coefficient to an equivalent damping factor. As for a modelled MR 
damper into the Bingham Plastic model, if a characteristic of MR damper is expressed with an 
expression focused on the relation between controlling force and response velocity, then it can be 
expressed as Eqn. 4.1. 
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uẋ = (S1x + S2ẋ)ẋ ≥ 0  (4.1) 
 
If this equation is expressed on a phase plane, then it conforms to Fig. 4.2. The shaded areas of the 
figure show areas that MR damper can output the control force. Other areas show ranges that MR 
damper cannot output control force. 
 

 
 

Figure 4.2. Phase Plane 
 

A correction coefficient ( 𝐩) is determined from the ratio of the shaded area to whole area of Fig. 4.2. 
For example, when we specifically examine a performance index related to acceleration, then Eqn. 4.2 
applies if the angle formed by the x-axis and the straight line of the inclination S1/S2 constitute is set 
to θ. It will be set to Eqn. 4.3 if multiplied by Eqn. 3.11 and Eqn. 4.2. 
 
𝐩 = (𝛑−𝜽)𝟐

(𝛑−𝜽)𝟐+𝜽𝟐  (4.2) 

hmr = pheq = sin θ

√3+cos 2θ�1+( θ
π−θ)2�

  (4.3) 

 
3.3. Verification by Time History Analysis 
 
The maximum responses in time history analysis are shown in Fig. 4.3. hmr is a damping factor after 
compensation. The dashed line “hmr” in Fig 4.3 shows maximum values which were calculated by 
using hmr. Fig 4.3 shows that the “ hmr” is nearer to “control” than the “heq”. In addition, Figs. 
4.4-4.5 portray the results of time history analysis. They were performed, respectively, in the series of   
α/M2=0.0001 (Fig. 4.4), 1 (Fig. 4.5), and 1000 (Fig. 4.6). The values of α/M2 respectively mean a 
small difference, and a medium difference, and a large difference of maximum responses. The the 
results show that "hmr" waveforms are nearer to the “control” waveforms than “heq” waveforms. 
Especially for α/M2=1000, periods of response waveforms differ under the influence by control which 
can make periods longer.  

 

 
 

a) El Centro 1940 NS 
 

 
 

b) Hachinohe 1968 NS 
 

 
 

c) JMA Kobe 1995 NS 
 

Figure 4.3. Maximum responses in time history analysis 
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a) El Centro 1940 NS 
 

 
 

b) Hachionhe 1968 NS 
 

 
 

c) JMA Kobe 1995 NS 
 

Figure. 4.4. The result of time history analysis 
(α/M2=0.0001) 

 
 

a) El Centro 1940 NS 
 

 
 

b) Hachionhe 1968 NS 
 

 
 

c) JMA Kobe 1995 NS 
 

Figure. 4.5. The result of time history analysis 
(α/M2=1) 
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a) El Centro 1940 NS 

 
 

b) Hachionhe 1968 NS
 

 
 

c) JMA Kobe 1995 NS 
 

Figure. 4.6. The result of time history analysis 
(α/M2=1000) 
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5. CONCLUSIONS 
 
Relations between control variables and control effects were studied by making a damping factor into 
an evaluation index. 
 
1. The relations between the weight coefficient and damping factor are shown in section 3. 
Furthermore, physical meanings of performance index and weight matrix were discussed. 
J = ∫(αẍ2 + u2) dt : The period and damping of a structure are increased if  increases. The 

damping factor converges to 1/√2. 
J = ∫(βẋ2 + u2) dt : The period of a structure is not changed and damping is increased if β increases. 
J = ∫(γx2 + u2) dt : The period of a structure is shortened and damping is increased if  increases. 

The damping factor converges to 1/√2. 
 
2. Examination of a controllable range was performed. If the weight coefficient is increased, then 
when an equivalent viscous damping factor estimates the control effect simply, the maximum 
responses differ from semi-active controlled responses. Therefore, we suggest that heq requires 
compensation. We proposed the correction coefficient which can reduce differences between 
elucidated responses from damping factors and real controlled responses. The  hmr  which are 
compensated heq by the correction coefficient p explains expressed control effect.  
 
 
AKCNOWLEDGEMENT 
This work was supported by the Grant in Aid for Scientific Research (C) of the Japan Society for the Promotion 
of Science (JSPS). 
 
 
REFERENCES  
 
Fujitani, H., Sodeyama, H., Hata, K., Hiwatashi, T., Shiozaki, Y., Inoue, N. and Soda, S. (2004). Application of 

Magnetorheological Fluid to Semi-Active Control of Building Structures by BRI and Partners. Key 
Engineering Materials, Vols. 270-273: 2126-2133. 

Ramallo, J. C., Johonson, E. A., Spencer, B. F. (2002).”Smart” Base Isolation Systems. JOURNAL OF 
ENGINEERING MECHANICS. 128:1088-1099. 

Yang, J. N. (1975). Application of Optimal Control Theory to Civil Engineering Structures. Journal of The 
Engineering Mechanics Division. EM6:819-838. 

Yoshioka, H. (2002). “Smart” Base Isolation Strategies Employing magnetorheological Dampers. JOURNAL OF 
ENGINEERING MECHANICS. 128: 540-550. 

 


